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Abstract. We give a classification of two-generator p-groups of
nilpotency class 2. Using this classification, we give a formula for
the number of such groups of order pn in terms of the partitions
of n of length 3, and find formulas for the number and size of their
conjugacy classes.

1. Introduction

In [1], Bacon and Kappe give a classification of 2-generator p-groups
of nilpotency class 2 with the goal of computing their nonabelian tensor
squares; that classification was also an attempt to correct errors found
in [9]. Later [5], Kappe, Visscher, and Sarmin extended the classifica-
tion to the case of 2-groups. The idea in these classifications is to start
with a generator of minimal order b, and then add a second generator a
of minimal order among those that generate the group together with b;
then one looks at the intersections 〈a〉 ∩ [G,G] and 〈b〉 ∩ [G,G] and
proceeds by considering the different possibilities.

These classifications were used to compute the nonabelian tensor
squares of these groups [1, 2, 5], as well as identifying those that are
capable [2, 6, 7]. When the first author was developing a formula to
count the conjugacy classes of the 2-generator 2-groups of class two,
she discovered that the classification was incomplete; based on her
example, we also discovered that the classification for the p-groups,
p > 2, was likewise incomplete.

The goal of this paper is to correct these omissions with a complete
classification. Our approach to classifying these groups is to exploit the
fact they are all central extensions of a cyclic p-group by an abelian
p-group of rank 2. This viewpoint simplifies the counting of conjugacy
classes, and the resulting classification also makes it straightforward
to count all the groups of this class of order pn for any given n. Our
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count agrees with the one recently obtained by C. Voll using zeta func-
tions [10], providing independent verification of our classification.

As the second and third authors were preparing a separate work
concerned with the computation of the nonabelian tensor squares and
other functors for these groups, a paper by Miech [8] was brought to our
attention. In this paper, Miech uses an approach very similar to ours
to classify the 2-generated p-groups with cyclic commutator subgroup
for odd p. Miech’s classification is somewhat more complex than ours
because of the need for more parameters to account for the groups of
class 3 that occur, and seems difficult to extend to the p = 2 case.
Where Miech’s classification overlaps with ours, the two agree.

Since both the classification theorem and our formula for counting
the conjugacy classes of these group are self-contained and straightfor-
ward we state them now.

Theorem 1.1. Let p be a prime and n > 2 a positive integer. Every
2-generated p-group of class exactly 2 corresponds to an ordered 5-tuple
of integers, (α, β, γ; ρ, σ), such that:

(i) α ≥ β ≥ γ ≥ 1,
(ii) α + β + γ = n,
(iii) 0 ≤ ρ ≤ γ and 0 ≤ σ ≤ γ,

where (α, β, γ; ρ, σ) corresponds to the group presented by

G =
〈

a, b
∣

∣

∣
[a, b]p

γ

= [a, b, a] = [a, b, b] = 1, ap
α

= [a, b]p
ρ

, bp
β

= [a, b]p
σ
〉

.

Moreover:

(1) If α > β, then G is isomorphic to:
(a) (α, β, γ; ρ, γ) when ρ ≤ σ.
(b) (α, β, γ; γ, σ) when 0 ≤ σ < σ + α− β ≤ ρ or σ < ρ = γ.
(c) (α, β, γ; ρ, σ) when 0 ≤ σ < ρ < min(γ, σ + α− β).

(2) If α = β > γ, or α = β = γ and p > 2, then G is isomorphic
to (α, β, γ; min(ρ, σ), γ).

(3) If α = β = γ and p = 2, then G is isomorphic to:
(a) (α, β, γ; min(ρ, σ), γ) when 0 ≤ min(ρ, σ) < γ − 1.
(b) (α, β, γ; γ − 1, γ − 1) when ρ = σ = γ − 1.
(c) (α, β, γ; γ, γ) when min(ρ, σ) ≥ γ − 1 and max(ρ, σ) = γ.

The groups listed in 1(a)–3(c) are pairwise nonisomorphic.

It is family 1(c) that is missing in the classifications from [1, 5]. In
addition, we discovered that the families of 2-groups given in [5] were
not disjoint, listing the groups (γ, γ, γ; γ, γ) twice for each γ > 0. We
will discuss this in more detail in the final section.
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Theorem 1.2. Let G be a 2-generator p-group of nilpotency class ex-
actly 2. If G has order pn and has derived subgroup of order pγ, then
G has

(1.3) pn−γ
(

1 + p−1 − p−(γ+1)
)

conjugacy classes.

By a result of P. Hall (see [3] Kapital V, Satz 15.2), any p-group G
of order pn has

(1.4) pe + p2
(

m+ k(p− 1)
)

conjugacy classes, where e ∈ {0, 1} and e ≡ n (mod 2), and m = ⌊n
2
⌋.

The nonnegative integer k was called the abundance of G in [4], and is
denoted by a(G). An immediate consequence of Theorem 1.2 is that
we are able to compute the abundance of the 2-generator p-groups of
class exactly 2. By equating (1.3) and (1.4) and solving for a(G) we
obtain the following result.

Corollary 1.5. Let G be a 2-generator p-group of nilpotency class
exactly 2. If G has order pn and has derived subgroup of order pγ, then
a(G), the abundance of G, is

a(G) =
pn−γ

(

1 + p−1 − p−(γ+1)
)

− pe −mp2

p2(p− 1)
,

where m = ⌊n/2⌋ and e ∈ {0, 1}, e ≡ n (mod 2).

The paper is structured as follows. In the next section we fix our
notation, establish some preliminary results, and outline our strategy
for classifying the 2-generator p-groups of class 2. In Section 3 we prove
Theorem 1.1, and in Section 4 we enumerate the number of groups of
order pn in our class for a fixed p and n. In Section 5 we provide for-
mulas for the number and size of the conjugacy classes for these groups
as well as prove Theorem 1.2. In the last section, we describe how
to translate the descriptions in the previously published classifications
into our 5-parameter classification.

2. Preliminaries

We write our groups multiplicatively, with 1 denoting the identity
of the group. We let Cm represent the cyclic group of order m. The
commutator of x and y is [x, y] = x−1y−1xy. IfG is nilpotent of class (at
most) 2, then the commutator bracket is alternating bilinear, and we

have the well-known formula (xy)n = xnyn[y, x](
n
2), where

(

n

2

)

= n(n−1)
2

for all integers n.
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Let H be a nilpotent group of class 2. Then H ′ is a central subgroup
of H . Suppose a and b are elements of H , and suppose further that a
has finite order m. Then 1 = [am, b] = [a, b]m. Hence we conclude that
the order of [a, b] divides m.

Let G be a 2-generator p-group of class 2 of order pn. Then G′ is
a central subgroup of G that is isomorphic to Cpγ with γ ≥ 1, and
G/G′ is isomorphic to Cpα × Cpβ with n = α + β + γ. Without loss of
generality assume α ≥ β. Let {a, b} be a transversal of G/G′. Then

ap
α

and bp
β

are elements of G′ and we have

[ap
α

, b] = 1 = [a, b]p
α

and [a, bp
β

] = 1 = [a, b]p
β

.

Hence pγ, the order of G′, divides both pα and pβ. It follows that
1 ≤ γ ≤ β ≤ α.

From this analysis we may view any 2-generator group G of order pn

and class 2 as a central extension of the form

(2.1) 1 −−−→ Cpγ
ψ

−−−→ G
η

−−−→ Cpα × Cpβ −−−→ 1,

where n = α + β + γ and α ≥ β ≥ γ ≥ 1. Therefore to enumerate all
2-generator p-groups of class 2 of order pn we must consider all positive
partitions (α, β, γ) of n of length 3. We denote by Gp(α, β, γ) the set of
nonisomorphic central extensions of the form (2.1) with nilpotency class
exactly 2. Any group in Gp(α, β, γ) is 2-generated and has order pn,
where n = α + β + γ.

Lemma 2.2. Let n ≥ 3. For any positive partition (α, β, γ) of n, the
set Gp(α, β, γ) is nonempty.

Proof. Let (α, β, γ) be a positive partition of n. We claim that

G = 〈a, b | ap
α

= bp
β

= [a, b]p
γ

= 1, [a, b, a] = [a, b, b] = 1〉

is a group in Gp(α, β, γ). Indeed, the group G is 2-generated and
nilpotent of class 2. The derived subgroup G′ is cyclic of order pγ with
G/G′ isomorphic to Cpα × Cpβ . �

Let Gpn = {Gp(α, β, γ) | (α, β, γ) is a positive partition of n ≥ 3}.
The following fact is nearly immediate.

Lemma 2.3. Let p be a prime and let n ≥ 3. The set Gpn is a partition
of all 2-generator p-groups of class 2 of order pn

Proof. Let G be an element of Gp(α, β, γ) and H be an element of
Gp(α

′, β ′, γ′) such that (α, β, γ) and (α′, β ′, γ′) are unequal. Then G
and H have nonisomorphic derived subgroups or they have different
abelianizations. In either case G and H cannot be isomorphic. �
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3. The groups in Gp(α, β, γ)

In this section we determine the nonisomorphic types within each
Gp(α, β, γ). We will show that each isomorphism class is determined by
a pair of nonnegative integers ρ and σ, with 0 ≤ ρ ≤ γ and 0 ≤ σ ≤ γ,
and subject to some ancillary conditions, so that each 2-generated p-
group of class exactly 2 corresponds to a unique ordered quintuple
(α, β, γ; ρ, σ).

In what follows, we will write “0 ≤ ρ, σ ≤ γ” to mean that 0 ≤ ρ ≤ γ
and 0 ≤ σ ≤ γ both hold.

For any extension

1 −−−→ N
ψ

−−−→ E
η

−−−→ G −−−→ 1,

the relations of E are the relations of N (under the injection ψ), the
action of G on N via the transversal function τ : G → E and the
injection ψ, and the relations determined by the relations of G. If
r = g1 · · · gn is a relator of G then τ(r) need not be the identity in E;
it is corrected by an element of the center of N . Hence τ(r) · ψ(c) = 1
for some c ∈ Z(N) is a relator in E.

Any group G in Gp(α, β, γ) is a central extension

1 −−−→ Cpγ
ψ

−−−→ G
η

−−−→ Cpα × Cpβ −−−→ 1.

Since this is a central extension, the action of Cpα × Cpβ on Cpγ is
trivial. Let 〈c′〉 ∼= Cpγ and let ψ(〈c′〉) ≤ G be generated by ψ(c′) = c.

Let 〈a′〉 × 〈b′〉 ∼= Cpα × Cpβ with relators [a′, b′], a′p
α

, b′p
β

. Following
our general analysis above and setting τ(a′) = a and τ(b′) = b, the
relations of any group in Gp(α, β, γ) are cp

γ

= 1, [a, b] = ci, ap
α

= cj,

bp
β

= ck, ca = c, and cb = c. Since G′ must be cyclic of order pγ, we
must have gcd(i, p) = 1.

Some values i, j, and k give isomorphic groups. Our goal is to
select exactly those values of i, j, and k that enumerate all of the
nonisomorphic groups in Gp(α, β, γ) with no repetitions. We assume
that 0 < i, j, k ≤ pγ.

We begin by making some simplifications. The proposition below
shows that the isomorphism type of G depends only on the largest
powers of p that divide i, j, and k.

Proposition 3.1. Fix α ≥ β ≥ γ, and let i, j, k be positive integers,
0 < i, j, k ≤ pγ, with gcd(i, p) = 1. Write j = upρ, k = vpσ, with
gcd(uv, p) = 1, 0 ≤ ρ ≤ γ, and 0 ≤ σ ≤ γ. We let G,H ∈ Gp(α, β, γ)
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be the groups

G =
〈

a, b, c
∣

∣

∣
ca = c, cb = c, [a, b] = ci, ap

α

= cj, bp
β

= ck
〉

,

H =
〈

x, y, z
∣

∣

∣
zx = z, zy = z, [x, y] = z, xp

α

= zp
ρ

, xp
β

= zp
σ
〉

.

Then G is isomorphic to H.

Proof. If ρ = σ = γ, then j = k = pγ . Set a1 = a, b1 = b, and
c1 = ci; then the elements a1, b1, c1 of G satisfy the same relations as
x, y, z ∈ H , and hence we have an onto homomorphism H → G that
maps x 7→ a1, y 7→ b1, and z 7→ c1. Since the two groups have the same
order, this map is an isomorphism.

If ρ < σ = γ, then pick s such that is ≡ u (mod pγ−ρ), and set

a1 = a, b1 = bs, and c1 = cis. Then [a1, b1] = cis = c1, a
pα

1 = cj =

cup
ρ

= cisp
ρ

= cp
ρ

1 , and bp
β

1 = cp
γ

= cp
γ

1 , so again we have an onto
homomorphism H → G, which proves the two groups are isomorphic.

If σ < ρ = γ, then pick r such that ir ≡ v (mod pγ−σ), set a1 = ar,
b1 = b, and c1 = cir; again, we obtain a homomorphism from H onto G,
showing that G is isomorphic to H .

Finally, assume that ρ, σ < γ. Pick r such that ir ≡ v (mod pγ−σ),
s such that is ≡ u (mod pγ−ρ), and set t ≡ irs (mod pγ). Let a1 = ar,
b1 = bs, and c1 = ct. The nontrivial relations to check are:

[a1, b1] = [a, b]rs = cirs = ct = c1 = ca11 = cb11 ,

ap
α

1 = arp
α

= crup
ρ

= crisp
ρ

= ctp
ρ

= cp
ρ

1 ,

bp
β

1 = bsp
β

= csvp
σ

= csrip
σ

= ctp
σ

= cp
σ

1 .

Therefore, there is a homomorphism from H onto G, and hence G is
isomorphic to H , as claimed. �

Thus we see that the isomorphism type of a 2-generated p-group of
class 2 depends on five parameters: α, β, and γ, giving the isomorphism
types of Gab and [G,G]; and on parameters ρ and σ. We establish the
following notation.

Definition 3.2. Let α ≥ β ≥ γ > 0 be npositive integers, and let ρ, σ
be integers, 0 ≤ ρ, σ ≤ γ. We will use the ordered 5-tuple (α, β, γ; ρ, σ)
to denote the group G ∈ Gp(α, β, γ) presented by

G =
〈

a, b, c
∣

∣

∣
[a, b] = c, ca = c, cb = c, ap

α

= cp
ρ

, bp
β

= cp
σ
〉

.

Proposition 3.1 guarantees that every group in Gp(α, β, γ) is iso-
morphic to at least one of the groups of the form (α, β, γ; ρ, σ). We
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still need to determine which choices of ρ and σ may lead to isomor-
phic groups. The goal of the next few results is to help discover when
(α, β, γ; ρ, σ) is isomorphic to (α, β, γ; r, s).

Lemma 3.3. Let p be a prime, and let α ≥ β > 0 be integers. Let
A = Cpα × Cpβ , with a and b generating the respective cyclic factors.
Then every automorphism of A is of the form

a 7→ akbℓ, b 7→ amp
α−β

bn,

where k is determined modulo pα, where ℓ, m, and n are determined
modulo pβ, and where kn− ℓmpα−β is relatively prime to p.

Proof. Any endomorphism is uniquely determined as above, so we only
need to verify that the endomorphism is invertible precisely when the
determinant kn− ℓmpα−β is relatively prime to p. If α = β, the condi-
tion is exactly that the corresponding 2× 2 matrix with coefficients in
Z/pαZ be invertible.

If α > β, then the condition is equivalent to k and n being relatively
prime to p. In this case, the necessity is immediate: if k is divisible
by p then the image of a has order strictly less than pα, and if n is
divisible by p then the image of b has order strictly less than pβ. For
sufficiency, assume that gcd(p, kn) = 1. Let d be an integer such that
d(kn− ℓmpα−β) ≡ 1 (mod pβ). Let f be such that fk ≡ 1 (mod pα),
and let g ≡ f(1 + dℓmpα−β) (mod pα). It is now straightforward to

verify that a 7→ agb−dℓ and b 7→ a−dmp
α−β

bdk yields the inverse of the
original map. �

Theorem 3.4. Let p be a prime, and fix α ≥ β ≥ γ > 0. Let ρ, σ, r, s be
integers, 0 ≤ ρ, σ, r, s ≤ γ, and let G be the group (α, β, γ; ρ, σ). If G is
isomorphic to (α, β, γ; r, s), then there exist integers k, ℓ,m, n, v, w such
that gcd(p, kn− ℓmpα−β) = 1 and gcd(p, vw) = 1, with (akbℓ)p

α

= cvp
r

and (amp
α−β

bn)p
β

= cwp
s

. Conversely, if we have integers k, ℓ, m, n, v,
and w as above, then G is isomorphic to the group (α, β, γ; r, s).

Proof. Let H be the group (α, β, γ; r, s), and suppose that there is
an isomorphism f : H → G. To avoid possible confusion, denote
the generators of H by aH , bH , and cH . The isomorphism f in-
duces an isomorphism f : Hab → Gab, so we know there exist integers
k, ℓ,m, n, x, y with gcd(p, kn− ℓmpα−β) = 1 such that f(aH) = akbℓcx

and f(bH) = amp
α−β

bncy. We also know that f restricts to an isomor-
phism from [H,H ] to [G,G], so f(cH) = cv for some integer v that is
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relatively prime to p. Since c is central and γ ≤ β ≤ α, we have:

(akbℓ)p
α

= (akbℓcx)p
α

= f(ap
α

H ) = f(cp
r

H ) = cvp
r

,

and (amp
α−β

bn)p
β

= (amp
α−β

bncy)p
β

= f(bp
β

H ) = f(cp
s

H ) = cvp
s

.

Setting w = v proves the necessity.
Conversely, suppose we have integers k, ℓ, m, n, v, and w with the

given properties. Set a1 = akbℓ, b1 = amp
α−β

bn, and c1 = c. Since
gcd(p, kn− ℓmpα−β) = 1, the images of a1 and b1 generate Gab, and so
by Proposition 3.1, there is an isomorphism between H = (α, β, γ; r, s)
and 〈a1, b1, c1〉; since these elements generate G, we obtain the desired
isomorphism. �

Thus, to determine whether the group (α, β, γ; ρ, σ) is isomorphic
to the group (α, β, γ; r, s), it suffices to check if there exist integers
k, ℓ,m, n, x, w, with gcd(p, kn − ℓmpα−β) = gcd(p, xw) = 1, and such

that (akbℓ)p
α

= cwp
r

and (amp
α−β

bn)p
β

= cxp
s

. Conversely, if we find all
possible exponents wpr and xps for suitable choices of k, ℓ,m, n (and
by Proposition 3.1 it suffices to determine the highest powers of p that
divide those exponents), we will determine all such isomorphisms.

Suppose G is the group (α, β, γ; ρ, σ) with 0 ≤ ρ, σ ≤ γ. For future
reference, we have the following computations:

(

akbℓ
)pα

= akp
α

bℓp
α

[b, a]kℓ(
pα

2 )(3.5)

= ckp
ρ+ℓpσ+α−β−kℓ(pα

2 ),

and
(

amp
α−β

bn
)pβ

= amp
α

bnp
β

[b, a]mnp
α−β(pβ

2 )(3.6)

= cmp
ρ+npσ−mnpα−β(pβ

2 ).

By Theorem 3.4, we only need to determine the largest powers of p
that divide the exponents of c in the above expressions. The binomial
coefficient and the factor pα−β lead us to consider separate cases: when
α > β; when α = β and either β > γ or p > 2; and when α = β = γ
and p = 2. We treat each of these cases in turn.

Theorem 3.7. Let p be a prime, and fix α > β ≥ γ > 0. The groups
(α, β, γ; ρ, σ) and (α, β, γ; r, s), where 0 ≤ ρ, σ, r, s ≤ γ, are isomorphic
if and only if:

(i) ρ = r and σ = s; or
(ii) ρ = r, σ ≥ ρ, and s ≥ r; or
(iii) σ = s, ρ ≥ σ + (α− β), and r ≥ s+ (α− β).
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In particular, the group (α, β, γ; ρ, σ) is isomorphic to one and only
one of the groups listed in 1(a)–1(c) of Theorem 1.1, according to the
conditions listed there.

Proof. Let G be the group (α, β, γ; ρ, σ), with α > β ≥ γ > 0; by
Theorem 3.4, any isomorphism is determined by a pair of elements akbℓ

and amp
α−β

bn, with kn relatively prime to p. Since α > β and α > γ,
the summands containing the binomial coefficients in the exponents
of c in (3.5) and (3.6) are both divisible by pγ and so vanish.

Thus, the exponent of c in (3.5) is kpρ+ℓpσ+α−β , while the exponent
of c in (3.6) is mpρ + npσ. If ρ ≤ σ, then the highest power of p
that divides the former is exactly pρ (since gcd(p, k) = 1), and the
highest power of p that divides the latter is at least pρ, possibly larger
depending on the value of m+npσ−ρ; this is condition in (ii). If we have
ρ ≥ σ + α− β, then the highest power of p that divides the exponent
of c in (3.5) is at least pσ+α−β , possibly larger depending on the value of
kpρ−σ−α+β+ℓ; whereas the highest power of p that divides the exponent
of c in (3.6) is exactly pσ since gcd(p, n) = 1. Thus, we are in the case
contemplated in condition (iii). Finally, if σ < ρ < σ+α−β, then the
highest power of p that divides the exponent of c in (3.5) is exactly pρ

since gcd(p, k) = 1, and the largest power in (3.6) is exactly pσ (again,
since gcd(p, n) = 1), and we are in the case contemplated in (i). Thus,
the given conditions are necessary for an isomorphism.

Conversely, condition (i) is trivially sufficient. Assume next that
ρ = r, ρ ≤ σ and r ≤ s, and we want to prove that (α, β, γ; ρ, σ) is
isomorphic to (α, β, γ; r, s). Setting k = 1, ℓ = 0, m = ps−r − pσ−ρ,
and n = 1, the exponent of c in (3.5) is of course pρ, while the exponent
of c in (3.6) is

(ps−ρ − pσ−ρ)pρ + pσ = ps − pσ + pσ = ps,

proving that (α, β, γ; ρ, σ) is isomorphic to (α, β, γ; r, s). Thus, (ii) is
sufficient. Finally, suppose that σ = s, ρ ≥ σ+α−β, and r ≥ s+α−β.
Then set k = 1, ℓ = pr−(σ+α−β) − pρ−(σ+α−β), m = 0, and n = 1. The
the exponent in (3.5) is

pρ + (pr−(σ+α−β) − pρ−(σ+α−β))pσ+α−β = pρ + pr − pρ = pr,

while the exponent in (3.6) is pσ = ps, proving that (α, β, γ; ρ, σ) is
indeed isomorphic to (α, β, γ; r, s) as claimed. �

Theorem 3.8. Let p be a prime, and fix α = β ≥ γ > 0. If p > 2 or
β > γ, then the groups (α, β, γ; ρ, σ) and (α, β, γ; r, s) are isomorphic if
and only if min(ρ, σ) = min(r, s). In particular, the group (α, β, γ; ρ, σ)
is isomorphic to (α, β, γ; min(ρ, σ), γ), as in (2) of Theorem 1.1.
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Proof. For the necessity of the condition, note that selecting k = 0,
ℓ = 1, m = 1, and n = 0 as in Theorem 3.4 shows we may assume
without loss of generality that ρ ≤ σ. Then the exponents of c in (3.5)
and (3.6) simplify to pρ(k + ℓpσ−ρ) and pρ(m+ npσ−ρ). If σ > ρ, since
at most one of k and m are multiples of p we obtain that at least one
of these two expressions will be divisible by exactly pρ and no higher
power, so min(r, s) is equal to ρ. On the other hand, if σ = ρ and
k + ℓ is divisible by p, then kn− ℓm ≡ kn + km ≡ k(n +m) (mod p)
and the fact that kn − ℓm is prime to p yields that m + n is prime
to p; symmetrically if m + n is divisible by p then k + ℓ is necessarily
be prime to p, so once again we have min(r, s) = ρ. This proves the
necessity.

For sufficiency, we may assume without loss of generality that ρ = r,
ρ ≤ σ, and r ≤ s. Then set k = 1, ℓ = 0, m = ps−ρ − pσ−ρ, and n = 1;
the exponent of c in (3.5) is pρ = pr, and the exponent in (3.6) is

(ps−ρ − pσ−ρ)pρ + pσ = ps − pσ + pσ = ps,

proving that (α, β, γ; ρ, σ) is isomorphic to (α, β, γ; r, s), as claimed. �

Theorem 3.9. Let p = 2 and fix α = β = γ > 0. The groups
(α, β, γ; ρ, σ) and (α, β, γ; r, s), where 0 ≤ ρ, σ, r, s ≤ γ, are isomor-
phic if and only if:

(i) min(ρ, σ) = min(r, s) and max(ρ, σ) = max(r, s); or
(ii) exactly one of ρ, σ, r, s is equal to γ−1 and the remaining three

are equal to γ; or
(iii) min(ρ, σ) = min(r, s) < γ − 1.

In particular, the group (α, β, γ; ρ, σ) is isomorphic to exactly one of the
groups in 3(a)–3(c) of Theorem 1.1 according to the conditions listed
there.

Proof. Let G be the group (α, β, γ; ρ, σ); without loss of generality we
may assume that ρ ≤ σ, since all conditions are symmetric and picking
k = 0, ℓ = 1, m = 1, and n = 0 will yield an isomorphism between
(α, β, γ; ρ, σ) and (α, β, γ; σ, ρ).

Since p = 2 and α = β = γ, the binomial coefficients in (3.5)
and (3.6) are congruent to 2γ−1 modulo 2γ. Thus, the exponent of
c in (3.5) simplifies to k2ρ + ℓ2σ + kℓ2γ−1, while the exponent of c
in (3.6) becomes m2ρ + n2σ +mn2γ−1.

To prove necessity of the conditions, assume first that ρ = σ = γ−1;
since k + ℓ+ kℓ and m+ n+mn are both odd, the highest power of 2
that divides the exponents of c in both (3.5) and (3.6) is exactly 2γ−1,
so we are in case (i). If ρ = γ − 1 and σ = γ, then the exponents of
c simplify to k2γ−1(1 + ℓ) and m2γ−1(1 + n). At most one of ℓ and n
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are even, so at least one of the two is divisible by 2γ , and the other is
divisible by at least 2γ−1, yielding either case (i) or (ii). If ρ = σ = γ,
then the exponents simplify to kℓ2γ−1 and mn2γ−1. We cannot have all
of k, m, n, and ℓ odd, so at least one of the two exponents is divisible
by 2γ and the other by at least 2γ−1, again yielding cases (i) or (ii).
Finally, consider the case where ρ < γ − 1; then the exponent in (3.5)
simplifies to 2ρ(k + ℓ2σ−ρ + kℓ2γ−1−ρ), and the one in (3.6) simplifies
to 2ρ(m+ n2σ−ρ +mn2γ−1−ρ). If σ = ρ, since at most one of k+ ℓ and
m+n is even (as kn−ℓm is odd), then at least one of the two exponents
is divisible by 2ρ and no higher power of 2, yielding case (iii). And if
σ > ρ, since at most one of k and m is even, we again have that at most
one of the two exponents is divisible by a power of 2 higher than 2ρ,
again yielding case (iii). Thus, the three conditions are necessary.

The sufficiency of (i) follows since α = β, as noted above. For (ii),
we simply note that (γ, γ, γ; γ − 1, γ) is isomorphic to (γ, γ, γ; γ, γ)
by setting k = ℓ = n = 1 and m = 0. Finally, if ρ is chosen with
ρ < γ−1, and σ and s are both greater than or equal to ρ and less than
or equal to γ, then we want to show that (γ, γ, γ; ρ, σ) is isomorphic
to (γ, γ, γ, ρ, s); this can be seen by setting k = n = 1, ℓ = 0, and
m = 2s−ρ − 2σ−ρ − 2γ−1−ρ(2s−ρ − 2σ−ρ). �

Putting the previous three theorems together yields Theorem 1.1 in
Section 1.

4. The number of nonisomorphic groups in Gp(α, β, γ)

In this section we use our classification to give a formula for the
number of groups in Gp(α, β, γ).

Recall that for fixed integers α ≥ β ≥ γ > 0, we use the notation
Gp(α, β, γ) to denote the set of nonisomorphic groups of class exactly
two that have abelianization isomorphic to Cpα ×Cpβ and commutator
subgroup isomorphic to Cpγ . We seek a formula for the cardinality of
Gp(α, β, γ) in terms of α, β, and γ (the analysis below will show the
number of elements does not depend on p).

Consider first the case where α = β. If p > 2 or β > γ, Theorem 1.1
says that each group in the class we are interested in is isomorphic
to one and only one of (α, β, γ; ρ, γ) with 0 ≤ ρ ≤ γ, giving γ + 1
nonisomorphic groups. If p = 2 and β = γ, then all of these are pairwise
nonisomorphic, with the exception of (α, β, γ; γ−1, γ) and (α, β, γ; γ, γ)
which are isomorphic, giving only γ nonisomorphic groups. However,
in this case there is a further group, namely (α, β, γ; γ − 1, γ − 1),
which is not isomorphic to any of the γ groups already counted, so we
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again obtain γ + 1 nonisomorphic groups. Thus, when α = β, the set
Gp(α, β, γ) has exactly γ + 1 elements.

Next, we consider the case where α−β > γ. In addition to the γ+1
groups given by (α, β, γ; ρ, γ) with 0 ≤ ρ ≤ γ, we also have one group
for each choice of a pair (ρ, σ) satisfying 0 ≤ σ < ρ ≤ γ; this gives

(

γ+1
2

)

further groups. Adding the two totals, we obtain (γ + 1) + 1
2
γ(γ + 1)

elements in Gp(α, β, γ) (we will see below the reason for expressing the
count in this manner).

Finally, we come to the case where 0 < α − β ≤ γ. There are γ + 1
nonisomorphic groups corresponding to the quintuples (α, β, γ; ρ, γ)
with 0 ≤ ρ ≤ γ. In addition, we also have α − β groups of the form
(α, β, γ; ρ, σ) with σ < ρ ≤ σ + α − β for each choice of σ that sat-
isfies 0 ≤ σ ≤ γ − (α − β). Finally, for σ = γ − (α − β) + k with
0 < k < α−β, we will have exactly (α−β)−k choices of ρ that satisfy
ρ ≤ γ and σ < ρ ≤ σ+α−β, and each such choice of ρ yields a further
nonisomorphic group. The total number is then q, where:

q = (γ + 1) + (α− β)(γ − (α− β) + 1) + ((α− β − 1) + · · · + 1)

= (γ + 1) + (α− β)(γ − (α− β − 1)) +
1

2
(α− β − 1)(α− β)

= (γ + 1) +
1

2
(α− β)(2γ − 2(α− β − 1) + (α− β − 1))

= (γ + 1) +
1

2
(α− β)(2γ + 1 − (α− β)).

Consider now the expression (γ+1)+ 1
2
κ(2γ+1−κ). If we set κ = 0,

we obtain the number of nonisomorphic groups when α = β. If κ = γ,
we obtain the number of nonisomorphic groups when γ < α− β. And
if κ = α − β, we obtain the number of nonisomorphic groups when
0 < α− β < γ. Therefore, we obtain the following result:

Theorem 4.1. Let p be a prime, and let α ≥ β ≥ γ > 0 be integers.
The cardinality of Gp(α, β, γ) is:

|Gp(α, β, γ)| = (γ + 1) +
1

2
min(γ, α− β)(2γ + 1 − min(γ, α− β)).

Note that if γ = 0, the expression in Theorem 4.1 evaluates to 1.
This is, of course, the number of nonisomorphic groups that are central
extensions of the trivial group by the abelian group Cpα ×Cpβ . Thus, if
instead of considering only positive values of α, β, γ with α+β+γ = n
we consider nonnegative values (that is, instead of considering only
partitions of n of length exactly 3 we consider partitions of length at
most 3), we obtain the number of nonisomorphic 2-generated groups
of order pn and class at most two (recall that a group is k-generated
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n 1 2 3 4 5 6 7 8 9 10

|G(2,p
n

,2)| 0 0 2 3 5 9 13 18 26 34
|G(2,p

n

,1)∪G(2,p
n

,2)| 1 2 4 6 8 13 17 23 31 40

n 11 12 13 14 15 16 17 18 19 20

|G(2,p
n

,2)| 44 58 72 89 111 134 160 193 227 266
|G(2,p

n

,1)∪G(2,p
n

,2)| 50 65 79 97 119 143 169 203 237 277

n 21 22 23 24 25 26 27 28 29 30

|G(2,p
n

,2)| 312 361 415 479 545 619 703 792 888 998
|G(2,p

n

,1)∪G(2,p
n

,2)| 323 373 427 492 558 633 717 807 903 1014

Table 1. Number of nonisomorphic 2-generated groups
of order pn and class at most 2.

if it can be generated by k elements, although it may be generated by
fewer).

Let G(k, pn, c) denote a set that contains one and only one represen-
tative from each isomorphism class of a k-generated group of order pn

and class exactly c. From the considerations above we have the follow-
ing result:

Theorem 4.2. Let p be a prime and n be a positive integer. The num-
ber of nonisomorphic 2-generated groups of order pn and class exactly 2
is given by

|G(2, pn, 2)| =
∑

α+β+γ=n
α≥β≥γ>0

(

(γ + 1) +
1

2
min(γ, α− β) (2γ + 1 − min(γ, α− β))

)

.

The number of nonisomorphic 2-generated groups of order pn and class
at most 2 is given by:

|G(2, pn, 1) ∪ G(2, pn, 2)| =
∑

α+β+γ=n
α≥β≥γ≥0

(

(γ + 1) +
1

2
min(γ, α− β) (2γ + 1 − min(γ, α− β))

)

.

In Table 1 we give the number of nonisomorphic 2-generated groups
of order pn and class exactly 2, and of class at most 2, for 1 ≤ n ≤ 30.
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5. Conjugacy classes

The goal of this section is to prove Theorem 1.2. This theorem
provides a formula for the number of conjugacy classes in terms of only
n and γ. As an intermediate step to proving this result, we first express
the conjugacy count in terms of α, β, and γ. This intermediate step
also provides a count for each conjugacy class of each possible size.
The following proposition provides such an analysis and is the key to
proving Theorem 1.2.

Proposition 5.1. Let G be any group in Gp(α, β, γ) and set

Φα = φ
(

pα−(γ−δ)
)

and Φβ = φ
(

pβ−(γ−δ)
)

,

where φ is Euler’s Totient function and 1 ≤ δ ≤ γ. Then:

(i) Every conjugacy class of G has order pi for some i ∈ {0, . . . , γ}
and for each i ∈ {0, . . . , γ} there exists a conjugacy class of G
of order pi.

(ii) For each δ = 1, 2, . . . , γ, the number of conjugacy classes of
order pδ in G is

Cδ(G) = pγ−δ



Φα + Φβ + ΦαΦβ + Φα

β−1
∑

i=γ−δ+1

φ(pβ−i) + Φβ

α−1
∑

i=γ−δ+1

φ(pα−i)



 .

(iii) The number of conjugacy classes of G is

pα+β−γ +

γ
∑

δ=1

Cδ(G).

Every element of G can be expressed uniquely as aibj [a, b]k, where
0 ≤ i < pα, 0 ≤ j < pβ and 0 ≤ k < pγ. Let g = aibj [a, b]k and
h = ai

′

bj
′

[a, b]k
′

be arbitrary elements of G. Then

gh = (aibj [a, b]k)(ai′ bj
′

[a,b]k
′

) = (ai)b
j′

(bj)a
i′

[a, b]k(5.2)

= aibj [a, b]ij
′−i′j[a, b]k = aibj [a, b]ij

′−i′j+k.

Hence the distinct elements conjugate to g are determined by the dis-
tinct values of ij′ − i′j modulo pγ ; in particular, there are at most pγ

elements conjugate to g.
The following lemma is used to proof of Proposition 5.1.

Lemma 5.3. Let i, j, m, and n be integers, with 0 ≤ m < n, and let
gcd(i, j) = d. If gcd(d, n) = 1 then there exist integers u and v such
that 0 ≤ u, v < n and (iu− jv) ≡ m (mod n).
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Proof. Since gcd(i, j) = d, there exist integers x and y such that d =
ix+ jy = ix − j(−y). By hypothesis d and n are relatively prime. So
there exist integers w and z such that 1 = wd + zn ≡ wd (mod n).
Substituting d and multiplying by m in the previous congruence we
obtain

m ≡ mw(ix− j(−y)) ≡ imwx− jmw(−y) (mod n).

Set u = mwx and v = mw(−y) and the result holds. �

We apply Lemma 5.3 as follows: let g and h be arbitrary elements
of the p-group G as above. Set pζ to be the largest common p-power
factor of i, j, and pγ (so 0 ≤ ζ ≤ γ). Write i = ı̄pζ and j = ̄pζ, and
let d = gcd(̄ı, ̄). Note that either ζ = γ, or gcd(d, p) = 1. Then

gh = aibj [a, b]ij
′−i′j[a, b]k = aibj [a, b]p

ζ (̄ıj′−i′̄)[a, b]k.

If ζ = γ, this expression is always equal to g (since ζ = γ if and only
if g ∈ Z(G), this makes perfect sense). If ζ < γ, then gcd(d, pγ) = 1
and applying Lemma 5.3 we have that for each value x, there exist
i′ and j′ such that ı̄j′ − i′̄ ≡ x (mod pγ). Therefore the expression
pζ (̄ıj′ − i′̄) + k has pγ−ζ distinct values modulo pγ . Hence for any

noncentral element g = aı̄p
ζ

b̄p
ζ

[a, b]k of G for which 1 ≤ ζ < γ, the
number of its conjugates is pγ−ζ and for a central element g ∈ Z(G),
the number of its conjugates is p0.

From the analysis above, any conjugate of g = aibj [a, b]k has the
form

aibj [a, b]k
′

,

where k′ = pζ (̄ıj′−i′̄)+k. Suppose h = aibj [a, b]k̂ and k 6≡ k̂ (mod pζ).

Then pζ (̄ıj′ − i′̄) + k 6= pζ (̄ıj′ − i′̄) + k̂ and g and h are not conjugate.
Hence for any given pair i, j, all elements of the form aibj [a, b]k have
conjugacy classes of the same size, and therefore there are pζ distinct
values of k that give rise to distinct conjugacy classes.

Since the conjugacy classes of order one correspond to elements in
the center of G, we need the following:

Proposition 5.4. Let G be an element Gp(α, β, γ). Then Z(G), the
center of G, has order pα+β−γ.

Proof. All elements in the center ofG have the form aip
γ

bjp
γ

[a, b]k where
1 ≤ i ≤ pα−γ , 1 ≤ j ≤ pγ−β, and 1 ≤ k ≤ pγ. Hence there are
pα−γpβ−γpγ = pα+β−γ different elements in the center. �

Proof of Proposition 5.1. (i). Each value of pδ, δ = 0, 1, . . . , γ, is the

size of a conjugacy class of G: setting ζ = γ − δ, the conjugates of ap
ζ

have the form ap
ζ

[a, b]p
ζj′ for some j′, and there are exactly pγ−ζ = pδ
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distinct values of pζj′ modulo pγ ; thus, the conjugacy class of ap
ζ

has
exactly pδ elements. So each of the given values occurs as the size of a
conjugacy class; and the discussion above shows that every conjugacy
class is of size pδ for some δ, 0 ≤ δ ≤ γ.

(ii). To count the number of conjugacy classes of order pδ, we set
ζ = γ − δ. Then for each i, j pair such that the greatest common
p-power divisor is pζ, there are pζ = pγ−δ distinct values of k that
form distinct conjugacy classes. This observation reduces the problem
to determining all i, j pairs that give rise to elements with conjugacy
classes of order pδ. We break this analysis into five pairwise mutually
exclusive cases.

Case 1. If i = ı̄pζ and j = 0. There are pα−ζ multiples of pζ between
1 and pα; ı̄ needs to be a number between 1 and pγ−ζ that is relatively
prime to p; hence, there are φ(pα−ζ) = φ(pα−γ+δ) = Φα possible values
for ı̄.

Case 2. If i = 0 and j = ̄pζ . The analysis follows as in Case 1, so
there are Φβ possible values for ̄.

Case 3. If i = ı̄pζ , j = ̄pζ , where p ∤ ı̄, and p ∤ ̄. Since the largest
p-power divisor of both i and j is pζ, the number of possible ı̄ and ̄
pairs is φ(pα−(γ−δ))φ(pβ−(γ−δ)) = ΦαΦβ , by our analysis from Case 1
and 2.

Case 4. If i = ı̄pζ , j = ̄pζ, where p ∤ ı̄, and p | ̄. In this case p divides
̄ and we have to account for all p-powers from ζ + 1 to β − 1. Once
this largest p-power that divides j is fixed, the argument for counting
the number of conjugacy classes of size pδ follows from Case 3. Hence
we sum over the possible p-powers to obtain

β−1
∑

i=ζ+1

φ(pα−ζ)φ(pβ−i) = φ(pα−ζ)

β−1
∑

i=ζ+1

φ(pβ−i) = Φα

β−1
∑

i=γ−δ+1

φ(pβ−i).

Case 5. If i = ı̄pζ , j = ̄pζ , where p | ı̄, and p ∤ ̄, the analysis follows
as in Case 4 to yield

α−i
∑

i=ζ+1

φ(pα−i)φ(pβ−ζ) = φ(pβ−ζ)
α−1
∑

i=ζ+1

φ(pα−i) = Φβ

α−1
∑

i=γ−δ+1

φ(pα−i).

The five cases now correspond to the five summands on the right hand
side of the expression for Cδ(G) in the statement of Proposition 5.1.

(iii). The total number of conjugacy classes is the sum of the num-
ber of conjugacy classes of each order. By part (i) the orders of the
conjugacy classes are exactly pδ for δ = 0, 1, . . . , γ. The elements in the
center of G correspond to those conjugacy classes with size p0 = 1, and



TWO GENERATOR p-GROUPS OF CLASS 2 17

we sum over δ = 1, . . . , γ for the conjugacy classes of size pδ determined
in (ii) to obtain the count. �

The following lemma and corollary are used to simplify the formula
from Proposition 5.1 (iii).

Lemma 5.5. Let a > b > j > 0 be integers and set m = a− b. Then:

a−1
∑

i=j

φ(pa−i) = pm

(

b−1
∑

i=j

φ(pb−i) + p−m
m
∑

i=1

φ(pi)

)

,(5.6)

b−1
∑

i=j

φ(pb−i) = p−m

(

a−1
∑

i=j

φ(pa−i) −

m
∑

i=1

φ(pi)

)

,(5.7)

m
∑

i=1

φ(pi) = pm − 1.(5.8)

Proof. These follow immediately using φ(pm) = (p − 1)pm−1 for all
m ≥ 1 and applying the identity

n
∑

j=0

pi =
pn+1 − 1

p− 1

to show (5.8). �

Corollary 5.9. Let G and H be two groups in G(2, pn, 2) whose derived
subgroups have order pγ. Then G and H have the same number of
conjugacy classes.

Proof. Fix n and let (α, β, γ) and (α′, β ′, γ) be two positive partitions
of n. If α = α′ then β = β ′ then both G and H are elements of
Gp(α, β, γ), hence they have the same number of conjugacy classes by
Proposition 5.1. Suppose then that α 6= α′, and without loss generality
take α > α′. Then α − α′ = β ′ − β = µ. Since α + β = α′ + β ′, the
centers of G and H have the same orders by Proposition 5.4. Hence it
suffices to show that Cδ(G) = Cδ(H) for δ = 1, . . . , γ. Since α = α′ + µ
and β = β ′ − µ, we have

Φα = φ(pα−(γ−δ)) = (p−1)pα
′+µ−(γ−δ)−1 = (p−1)pα

′−(γ−δ)−1pµ = Φα′pµ

and similarly we obtain Φβp
µ = Φβ′ . Thus,

ΦαΦβ = Φα′pµΦβ′p−µ = Φα′Φβ′ .
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We complete the proof by showing that the sums of the remaining four
terms of Cδ(G) and Cδ(H) are equal. We express the sum

Φα + Φβ + Φα

β−1
∑

i=γ−δ+1

φ(pβ−i) + Φβ

α−1
∑

i=γ−δ+1

φ(pα−i)

in terms of α′ and β ′ using (5.6) and (5.7) to obtain

Φα′pµ + Φβ′p−µ+Φα′pµ

(

p−µ

(

β′−1
∑

i=γ−δ+1

φ(pβ
′−i) −

µ
∑

i=1

φ(pi)

))

+Φβ′p−µ

(

pµ

(

α′−1
∑

i=γ−δ+1

φ(pα
′−i) + p−µ

µ
∑

i=1

φ(pi)

))

.

Simplifying, we get

Φα′pµ + Φβ′p−µ + Φα′

β′−1
∑

i=γ−δ+1

φ(pβ
′−i) − Φα′

µ
∑

i=1

φ(pi)

+ Φβ′

α′−1
∑

i=γ−δ+1

φ(pα
′−i) + Φβ′p−µ

µ
∑

i=1

φ(pi)

= Φα′

β′−1
∑

i=γ−δ+1

φ(pβ
′−i) + Φβ′

α′−1
∑

i=γ−δ+1

φα
′−i

+Φα′

(

pµ −

µ
∑

i=1

φ(pi)

)

+ Φβ′p−µ

(

1 +

µ
∑

i=1

φ(pi)

)

= Φα′ + Φβ′ + Φα′

β′−1
∑

i=γ−δ+1

φ(pβ
′−i) + Φβ′

α′−1
∑

i=γ−δ+1

φ(pα
′−i),

where the last equality is obtained using (5.8). Hence Cδ(G) = Cδ(H)
as desired. �

Proof of Theorem 1.2. Let G be a 2-generated p-group of class exactly
2 and order pn, and suppose that G′ has order pγ. By Corollary 5.9,
to count the number of conjugacy classes we may, without loss of gen-
erality, assume that G ∈ Gp(n − 2γ, γ, γ). Set µ = n − 3γ. Then
Φα = φ(pµ+δ), Φβ = φ(pδ),

α−1
∑

i=γ−δ+1

φ(pα−i) =

µ+δ−1
∑

i=1

φ(pi), and

β−1
∑

i=γ−δ+1

φ(pβ−i) =
δ−1
∑

i=1

φ(pi).
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Using (5.8) to simplify the equations above we obtain:

Cδ(G) = pγ−δ
(

φ(pµ+δ) + φ(pδ) + φ(pµ+δ)φ(pδ)
)

+ pγ−δ
(

φ(pµ+δ)(pδ−1 − 1) + φ(pδ)(pµ+δ−1 − 1)
)

= pγ−δ
(

φ(pµ+δ)φ(pδ) + φ(pµ+δ)pδ−1 + φ(pδ)pµ+δ−1
)

= pγ−δ
(

φ(pµ+δ)φ(pδ) + φ(pδ)pµ+δ−1 + φ(pδ)pµ+δ−1
)

= pγ−δφ(pδ)
(

φ(pµ+δ) + pµ+δ−1 + pµ+δ−1
)

= pγ−δφ(pδ)
(

(p− 1)pµ+δ−1 + pµ+δ−1 + pµ+δ−1
)

= pγ−δφ(pδ)pµ+δ−1(p+ 1) = pγ+µ−1φ(pδ)(p+ 1)

= pn−2γ−1φ(pδ)(p+ 1).

Summing over δ and adding the order of the center of G, we obtain
γ
∑

δ=0

Cδ(G) = pn−2γ + pn−2γ−1(p+ 1)

γ
∑

δ=1

φ(pδ)

= pn−2γ + pn−2γ−1(p+ 1)(pγ − 1)

= pn−2γ + pn−2γ−1(pγ+1 − p+ pγ − 1)

= pn−2γ + pn−γ − pn−2γ + pn−γ−1 − pn−2γ−1

= pn−γ + pn−γ−1 − pn−2γ−1

= pn−γ
(

1 + p−1 − p−(γ+1)
)

,

as claimed. �

We conclude this section with a direct consequence of Corollary 5.9.

Corollary 5.10. Let (α, β, γ) and (α′, β ′, γ′) be two partitions of n of
length 3, and let G ∈ Gp(α, β, γ), H ∈ Gp(α

′, β ′, γ′). Then G and H
have the same number of conjugacy classes if and only if γ = γ′. In
particular, the set

{

k
∣

∣ there exists G ∈ G(2, pn, 2) with k conjugacy classes
}

has exactly ⌊n/3⌋ elements.

Proof. If γ = γ′, then the number of conjugacy classes are equal. Con-
versely, if the number of conjugacy classes are equal, then

pn−γ + pn−γ−1 − pn−1 = pn−γ
′

+ pn−γ
′−1 − pn−1.

Since 0 < γ < n, the largest power of p that divides the left hand side
is pn−γ−1, and the highest power of p that divides the right hand side
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is pn−γ
′−1, so γ = γ′. Since 0 < γ ≤ ⌊n/3⌋ must hold, there are exactly

⌊n/3⌋ possible values of γ. �

6. Connections to previously published descriptions

As mentioned in the introduction, the attempts to classify the 2-
generated p-groups of class 2 that appeared in [1, 5] were incomplete,
and in the case of p = 2, two families that were claimed to be disjoint
are not. There is also overlap between our Theorem 1.1 and the results
in [8], where the two agree.

In this final section, we connect our description with those given
in the works mentioned above; this is particularly important for the
classifications in [1, 5], since the lists given there have been used in
other articles, e.g., [2, 6, 7].

We begin with the work of Miech, since it is closest to our description.
Miech considers 2-generated nonabelian p-groups with cyclic commu-
tator subgroup. Miech uses x, y, z where we use a, b, c, and uses a, b, c
where we use α, β, γ, but otherwise his approach is essentially the same
as ours, with the added complications necessitated by not assuming the
groups are of class two. The three parameters, a, b, c describe the same
quantities as our α, β, γ: pa ≥ pb are the abelian invariants of the
abelianization of the group, and pc is the order of the commutator sub-
group. Because of the more general situation considered in [8], only
the inequalities a ≥ b, a ≥ c may be taken a priori.

Once these three quantities are fixed, Miech parameterizes the groups
with 4-tuples, [Rpr, Sps, pm, pn], that describe the groups generated by

x, y, and z and with relations: [y, x] = z, zp
c

= 1, xp
a

= zRp
r

, yp
b

=
zSp

s

, [z, x] = pm, [z, y] = pn, where the seven inequalities r + m ≥ c,
r + n ≥ c, s+ n ≥ c, 1 ≤ m ≤ c, 1 ≤ n ≤ c, 0 ≤ r ≤ c, and 0 ≤ s ≤ c
hold, and such that pb ≡ Spm+s (mod pc) and gcd(RS, p) = 1. Because
the groups considered include groups of class three, one cannot restrict
attention to r and s in general, as we did, hence the need to keep
track of the parameters R and S. The groups then break down into 21
families that are described in eight theorems, depending on the relative
values of b and c, and of a − b and c; these families, like ours, specify
inequalities between the parameters R, S, r, s, m, and n. Only those
families in which m = n = c is possible correspond to groups of class
two; in those, the inequalities always force R = S = 1, as we expect.
The parameters r and s then correspond to our ρ and σ, respectively.
The only other difference is that rather than use pc as the parameter
when xp

a

= e or yp
b

= e, Miech sometimes sets Rpr = 0 or Sps = 0,
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respectively, rather than setting R = 1 and r = c, or S = 1 and s = c,
respectively, as we see below.

Our four families (Families 1(a)–1(c) and 2 from Theorem 1.1) fall
into seven of the families described by Miech; setting m = n = c and
simplifying the ancillary inequalities and conditions on the parameters
to account for this, they are:

(I) [pr, 0, 0, 0] when b ≥ c and a − b > c [8, Thm 2(a)], which are
included in our Family 1(a).

(II) [pr, ps, 0, 0] when b ≥ c, a − b > c, and 0 ≤ s < r ≤ c [8,
Thm 2(c)], which fall either in our Family 1(b) or in 1(c).

(III) [0, ps, 0, 0] when a > b ≥ c, a − b ≤ c, and s < c − (a − b)
[8, Thm 3(b)], which are included in our Family 1(b).

(IV) [pr, 0, 0, 0] when a > b ≥ c, a− b ≤ c, and r ≤ c [8, Thm 3(c)];
these are included in our Family 1(a).

(V) [pr, ps, 0, 0] when a > b ≥ c, a − b ≤ c, s < r < s + a − b + 1,
and s < c [8, Thm 3(f)], which are in our Family 1(c).

(VI) [0, ps, 0, 0] when a > b ≥ c, a − b ≤ c, s ≤ c − (a − b) [8, Thm
3(h)], which are in our Family 1(b).

(VII) [0, ps, 0, 0] when a = b and 0 ≤ s ≤ c [8, Thm 5(b)]; these
correspond to our Family 2, with the roles of a and b reversed.

None of the other families or possible values of the parameters given
by Miech correspond to groups of class 2.

Moving now to the descriptions found in [1, 5], the groups fall into
four families, one of which can only occur in the case p = 2. The
notation in these papers is very hard to reconcile with our own, since
they use both a, b, c and α, β, γ but for purposes very different from
ours. We replace these variables in the descriptions that follow with
x, y, z for the elements, and t, u, v, w for the parameters at play. The
descriptions below for p > 2 appear in [1, Thm 2.4], and in [5, Thm 2.5]
for p = 2.

(i)
(

〈z〉 × 〈x〉
)

⋊ 〈y〉, with [x, y] = z, |z| = pt, |y| = pu, and
t ≥ u ≥ v ≥ 1. By setting a = x, b = y, and c = z, we see that
these groups are of type (t, u, v; v, v).

(ii) 〈x〉 ⋊ 〈y〉, with [x, y] = xp
t−v

, |x| = pt, |y| = pu, |[x, y]| = pv,
t ≥ u, t ≥ 2v, u ≥ v ≥ 1; when p = 2, we also place the
restriction t+ u > 3. If t − v ≥ u, then the groups are of type
(t− v, u, v; v, 0), which can be seen by setting a = x, b = y, and
c = xp

t−v

; if t − v < u, then we get (u, t− v, v; 0, v) by setting

a = y, b = x, and c = xp
t−v

.
(iii)

(

〈z〉 × 〈x〉
)

⋊ 〈y〉, with [x, y] = xp
t−v

z, [z, y] = x−p
2(t−v)

z−p
t−v

,
|x| = pt, |y| = pu, |z| = pw, |[x, y]| = pv, v > w ≥ 1, t+w ≥ 2v,
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u ≥ v; if p is odd we also require t ≥ u. If t + w − v ≥ u,
then we let a = x, b = y, and c = xp

t−v

z and we obtain that
the group is of type (t+ w − v, u, v;w, v). If t+ w − v < u, we
reverse the choice of a and b and get that the group is of type
(u, t+ w − v, v; v, w).

(iv)
(

〈z〉 × 〈x〉
)

〈y〉, with |x| = |y| = 2v+1, |z| = 2v−1, [x, y] = x2z,
[z, y] = x−4y−2, |[x, y]| = 2v, x2v

= y2v

, v > 0. These groups
have no counterparts for odd prime, and they correspond to our
family 3(b), groups of type (v, v, v; v − 1, v − 1), with a = x,
b = y, and c = x2z.

As is clear, these families miss all the groups in family 1(c). The
smallest group that does not occur in these families is group (4, 2, 2; 1, 0),
of order p8; it was the realization by the first author that this group
(with p = 2) was not included in any of the families (i)–(iv) above that
led to our Theorem 1.1.

In addition to this omission, when p = 2 the four families are not
disjoint. If we let u = v = t − 1 = w + 1 in family (iii) above, the
values lead to the group (v, v, v; v − 1, v), which is isomorphic to the
group (v, v, v; v, v) that occurs in family (i). The condition t + u > 3
in family (ii) prevents this group from occurring for a third time when
v = 1. This overlap shows up inadvertently in [7, Thm 8.1(d)].
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