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Abstract

Simple heuristic models and recent numerical simulations show that the proba-
bility of habitable planet formation increases with stellar mass. We combine those
results with the distribution of main sequence stellar masses to obtain the dis-
tribution of stars most likely to possess habitable planets as a function of stellar
lifetime. We then impose the self selection condition that an intelligent observer
can only find themselves around a star with a lifetime greater than the time re-
quired for that observer to have evolved, Ti. This allows us to obtain the stellar
timescale number distribution for a given value of Ti. Our results show that for
habitable planets with a civilization that evolved at time Ti = 4.5 Gyr the me-
dian stellar lifetime is 13 Gyr, corresponding approximately to a stellar type of
G5; with 2/3 of the stars having lifetimes between 7 and 30 Gyr, corresponding
approximately to spectral types G0 - K5. For other values of Ti the median stellar
lifetime changes by less than 50%.

1 Introduction

In the ongoing search for extrasolar habitable planets and the SETI search for intelligent
life it is desirable to know the optimum target star types. The principle of mediocrity
(aka Copernican Principle) holds that, in the absence of any contrary evidence, we should
assume that our solar system is typical among those planetary systems with intelligent
observers. In particular this suggests that the sun is a typical star among those stars
supporting habitable planets and intelligent life. Thus most SETI and extrasolar planet
searches have favored solar type stars. On the other hand, lower mass stars, especially
M stars, are much more numerous (therefore closer) and have been the focus of recent
attention in the search for habitable planets (Tarter, et al. 2007; Scalo et al. 2007).

In this paper we attempt to quantify the distribution of stars most likely to support
habitable planets and therefore the possibility of intelligent life. In section 2 we model the
probability of habitability as a function of stellar mass. We combine this with the stellar
distribution of main sequence lifetimes in section 3 to obtain the distribution of stars
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most likely to possess habitable planets. In section 4 we impose the requirement that the
habitable star lifetime must exceed the time required for intelligence to evolve Ti (= age
of the star when intelligence evolved). This allows us to obtain the stellar distribution
as a function of Ti. We discuss parameter variations in section 5 and summarize our
conclusions in section 6.

2 The stellar habitability weighting function

We wish to model the probability, P (M), that a star of given mass M has one or more
terrestrial planets within its habitable zone (HZ). The HZ around a star is the radial
band ∆rHZ within which an Earth-like planet could support surface liquid water. The
inner and outer HZ radii are determined by the critical stellar fluxes associated with the
loss of water and permanent glaciation (Kasting et al. 1993). In the following analysis
it is not crucial to distinguish between zero age main sequence, mid-main sequence, or
specific continuously-habitable zones. We follow Raymond, Scalo and Meadows (2007,
hereafter RSM) and assume a minimum planetary habitability mass of 0.3 M⊕.

In the planet formation process, the number of hypothetical Hill spheres, which
roughly determines the potential number of accreting embryos, contained within ∆rHZ

increases with decreasing stellar mass. This theoretical expectation is supported by sim-
ulations. However, the final planet mass depends primarily on the total mass available
in the HZ annulus, MHZ, and not on the total number of embryos. Kokubo et al. (2006)
found that the mean planet mass Mpl scaled linearly with disk mass Mpl ∝ M0.97−1.1

disk .
RSM found that the mean planet mass Mpl ∝ M1.1

HZ . Following RSM, we assume the
surface density of protoplanetary disks, σ(r), varies with heliocentric distance r, as

σ(r) = σ1FZ
(

r

1AU

)−α
(

M

M¯

)h

(1)

where M is the mass of the star, σ1 is the surface density of solids at 1 AU in the
minimum-mass solar nebular model, F is a scaling factor for the disk mass ( F = 1 for
the minimum mass solar nebula), Z = 1 is the solar metallicity and α is the disk density
radial power index. Using the fiducial parameters of RSM, F = Z = α = h = 1 leads to
the predicted scaling for the planetary mass as a function of M ,

Mpl ∝ σ(rHZ)rHZ∆rHZ ∝ M∆rHZ ∝ ML
1
2 ∝ M1+ p

2 , (2)

where L is the stellar luminosity and we have set rHZ (the mean HZ radius) = r in
Eq. (1). These proportionalities follow from the observation that both rHZ and ∆rHZ

are ∝ L1/2 for a fixed critical flux. L is related to M by the mass-luminosity relation
L ∝ Mp.

This simple model was supported by the late stage accretion simulations of RSM.
They concluded that the fraction of systems with sufficient disk mass to form ≥ 0.3M⊕
habitable planets decreases for low mass stars for every realistic combination of param-
eters. A similar conclusion, based in part on volatile deficiency of HZ planets around
low mass stars, was reached by Lissauer (2007). Using RSM’s fiducial parameters, the
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mean (determined by averaging over several simulations) planetary mass dependency
on stellar mass M is approximately Mpl ∝ M3. We assume as our working heuristic
model that the probability P (M) is also proportional to the mass in the HZ annulus
P (M) ∝ M1+ p

2 .
Figure 6 of RSM gives the fraction of simulations, P (M), for which stars of a given

mass produce one or more HZ planets of critical mass ≥ 0.3M⊕ as a function of M for
0.2 M¯ < M < 1.0 M¯ and for several values of α. The other parameters are fixed at
their fiducial values F = Z = h = 1. We approximate these curves with power law fits,
P (M) ∝ Ma. The fiducial case of α = 1 can be fit with a = 3, in agreement with our
heuristic model for p=4. In a simple model in which the probability of a star possessing
at least one habitable planet is assumed to be proportional to the absolute width of the
habitable zone, P (M) ∝ ∆rHZ ∝ L

1
2 ∝ M

p
2 , a = 2 for p = 4. In a model in which

P (M) is proportional to the number of Hill radii times the annular mass contained in
the HZ, a = 3. In the following analysis we treat a as a parameter independent or p,

P (M) =





( M
M¯

)a M < 1M¯

1 M > 1M¯

. (3)

The value of P (M) = 1 for M > 1M¯ is based on a rough extrapolation of RSM’s
simulations for their α =1 case (our a = 3) beyond their simulation cut off mass of 1M¯.
By inspection of this curve and the trend of their Mcritical = 0.1M⊕ curve it is evident
that P (M) asymptotically approaches 1.0 somewhat beyond M = 1M¯.

3 The number distribution of “habitable” stars

3.1 The number distribution in mass

The number distribution of stellar masses φ(M) ≡ (dN/dM) when multiplied by P (M)
gives the number distribution of stars weighted according to their habitability probabil-
ity, or the number distribution of “habitable stars” for brevity, φH(M) ≡ φ(M)P (M) =
(dNH/dM). The stellar mass distribution can be approximated by a power law over a
given range of masses, φ(M) ∝ M−q. For stellar masses less than 1M¯ a power law
index of q = 1.0± 0.5 is consistent with most studies (Massey and Meyer 2001). Over
this range of masses there is little difference between the present day mass function
(PDMF) and the initial mass function (IMF). For stars of mass > 1M¯ an adequate
approximation is the Salpeter IMF with index q′ = 2.35 and the PDMF with index q′

= 5.4 (Charbier 2003). In the simulations of RSM (their Fig. 6) P (M) also has a break
near M ≈ 1M¯, beyond which P (M) ≈ 1. In the following analysis stellar masses and
lifetimes are in solar units, M¯ ≡ 1 and T¯ ≡ 1. The number distribution in mass of
habitable stars is then

φH(M) ∝
{

Ma−q M < 1
M−q′ M > 1

. (4)

For a = 3, q = 1, and q′ = 5.4, φH(M) is strongly peaked at 1 M¯.
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3.2 The distribution in main sequence lifetime

Assuming a mass-luminosity relation of the form L ∝ Mp and a main sequence lifetime
T ∝ (M/L) ∝ M1−p, one obtains

M ∝ T
1

1−p (5)

and
dM

dT
∝ T

p
1−p . (6)

The number distribution of habitable stars in main sequence lifetime φH(T ) ≡ (dNH/dT ) =
φH(M)(dM/dT ) is

φH(T ) ∝




T
a+p−q
1−p ≡ T s T > 1

T
p−q′
1−p ≡ T s′ T < 1

. (7)

4 The number distribution of “intelligent” stars

We assume that the number distribution of “intelligent” stars will be proportional to
the distribution of habitable stars given by Eq. (7) but truncated at T = Ti, since the
region T ≤ Ti is logically excluded. We neglect any other (unknown) dependencies of Ti

on T . In our model the joint number distribution is

φ(Ti, T ) ∝
{

0 Ti > T
φH(T )φi(Ti) Ti < T

. (8)

where the unknown number distribution φi(Ti) and φH(T ) are assumed independent and
therefore separable in the joint distribution.

To help clarify our analysis we first consider a hypothetical thought experiment. We
imagine that there is a Galactic central repository that contains data on all intelligent
civilizations that have ever existed in the history of the Galaxy. Included in this data base
are the times of emergence of these intelligent civilizations, Ti, and the main sequence
lifetime of their local star, T . We now imagine querying the repository for a list of pairs
(Ti, T ) of stars currently in their main sequence phase which have, or previously had,
an intelligent civilization. It is this hypothetical data base that our statistical analysis
attempts to model.

Assume we have a collection of habitable stars with intelligent life evolving at the
same time Ti to Ti +∆Ti. We can use Eq. (8) to find the fraction, f , of these intelligent
stars with lifetimes in the interval between Tmin and Tf and the fraction (1-f) with
lifetimes in the interval between Tf and Tmax,

f

1− f
=

φi(Ti)∆Ti

∫ Tf

Ti
φH(T )dT

φi(Ti)∆Ti

∫ Tmax
Tf

φH(T )dT
, (9)

where the unknown number distribution φi(Ti) cancels and the lower limit Tmin has been
set equal to Ti, the time required for the evolution of the intelligent observers. Thus
Tf ≡ Tf (Ti) is the lifetime of that intelligent star which divides the distribution into
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fractions f and (1 − f) for the specific Ti. For example, if f = 1/2, the corresponding
Tf=1/2 is the median lifetime of the distribution. Assuming first that Tf ≤ 1,

1− f

f

∫ Tf

Ti

T s′dT =
∫ 1

Tf

T s′dT +
∫ Tmax

1
T sdT (10)

where s and s′ are defined in Eq. (7). For Earth T⊕
i = 0.45, in solar units. The intelligent

star distribution is truncated at Tmin = Ti (= age of star when intelligent life evolved)
because an observer cannot be found around a star with a lifetime less than their own
Ti. Since φi(Ti) is assumed to be independent of φH(T ), the lower limit of Ti can be
treated as a constant for the purpose of the integration. Solving Eq. (10) yields

Tf =

[(
1− f

f

)
T s′+1

i + 1−
(

s′ + 1

s + 1

)
+

(
s′ + 1

s + 1

)
T s+1

max

] 1
s′+1

f
1

s′+1 . (11)

If Tf ≥ 1, the fraction, f , of habitable stars with lifetimes ≤ Tf is then obtained from

∫ 1

Ti

T s′dT +
∫ Tf

1
T sdT =

f

1− f

∫ Tmax

Tf

T sdT (12)

and

Tf =

[(
s + 1

s′ + 1

)
T s′+1

i + 1−
(

s + 1

s′ + 1

)
+

(
f

1− f

)
T s+1

max

] 1
s+1

(1− f)
1

s+1 . (13)

5 Discussion

For a given set of parameters (a, q, q′, and p) Eqs. (11) and (13) can be used to find the
median stellar lifetime, Tf=1/2, of habitable stars having intelligent life that evolved at
time Ti, and the approximate ±1σ lifetimes, Tf=1/6 and Tf=5/6. Since Tmax(≈ 103) À
Ti(≤ 1) terms involving Tmax are negligible for all realistic parameters. (There may be
other, e.g. geological, stronger limits on Tmax and this will be considered elsewhere.)
We adopt fiducial parameters a = 3, q = 1, q′ = 5.4, and p = 3.5, which yield s =
-2.2 and s′ = 0.76. The value of a = 3 is based on a power law fit to RSM’s α = 1,
Mcritical = 0.3M⊕ case, i.e. their fiducial set of parameters. Our choice of q = 1 is
an adequate approximation (Massey and Meyer 2001) of more complex fits to the data
(Chabrier 2003) and q′ = 5.4 is the present day mass function exponent. Finally, p =
3.5 is a compromise of a range of power laws with exponents ranging from 2.7 for the
least massive stars to 4.7 for solar mass stars to 3.0 for more massive stars (Massey &
Meyer 2001).

Figure 1 is based on our fiducial parameters and shows Tf as a function of the
time of appearance of intelligent life Ti. For a given Ti the thick solid curve gives the
corresponding median stellar lifetime, Tf=1/2, from Eqs. (11) and (13). The two thin
solid curves are for Tf=1/6 and Tf=5/6 in Eqs. (11) and (13) and are approximately the
±1σ curves. For a given Ti these curves bracket the most probable associated stellar
lifetimes. From Eq. (9), the f = 0 dashed curve corresponds to Tf=0 = Ti and, since
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intelligent life must evolve before the end of the life of the star, the phase space below
this curve is excluded. The solar system data is indicated by the ⊕ symbol. The
theoretical distribution φi(Ti) is unknown, but realizable Ti’s must be less than the age
of the Galaxy, Log(Tgal) = 0. We note that the median and ±1σ brackets for habitable
stars only, φH(T ), can be found from the figure by setting Ti = 0, or Log(Ti) = −∞.
The figure shows that there is not a significant difference in the number distribution
curves for habitable stars (only) and for “intelligent” stars unless Log(Ti) > −0.5.

If we searched the previously discussed Galactic repository data base for civilizations
having the specific timescale Ti = T⊕

i we would record a distribution of stellar lifetimes
given by φH(T > T⊕

i ), i.e. Eq. (7) truncated at T⊕
i . From Eqs. (11) and (13) or from

Fig. 1 we find that half of the civilizations in this data base will have reported that their
local star has a lifetime ≥ 1.26 and half will have reported that their local star has a
lifetime ≤ 1.26. Two thirds will have reported that their local star has a lifetime lying
somewhere between 0.72 and 3.1.

Varying each parameter over a realistic range while holding the other fiducial pa-
rameters and Ti = 0.45 fixed showed that our results are robust. The test ranges were
as follows: a = 1.5 ↔ 4.0, q = 0.5 ↔ 1.5, q′ = 2.35 ↔ 5.4, and p = 2.5 ↔ 4.7. The
minimum Tf=1/2 is 1.1 and the maximum is 2.1. This maximum corresponds to a =
1.5 (α ≈ 3/2). This is the original MMSN value of α (Hayashi 1981) but more recent
theoretical and observational studies suggest that α = 1/2 ↔ 1 (Davis 2005; Garaud &
Lin 2007; Andrews and Williams 2007; RSM). Values of α between 1/2 and 1 correspond
to our a ≈ 3 and 4, yielding T 1

2
= 1.26 and 1.1, respectively.

The approximate equality of Ti and T for the solar system along with the assumption
that φ(T ) and φi(Ti) are independent led Carter (1983) to conclude that intelligent life is
rare in the universe. However, this “coincidence” cannot apply to most stars: a typical
T for an M star (e.g., 1,000 Gyr) is much greater than Ti since Ti is limited by the age
of the Galaxy (10 Gyr). The solar system coincidence could be rephrased - why don’t
we find ourselves around a more typical star? Figure 1 shows that most intelligent life
should arise around stars of mass ≈ 1 M¯ . With the additional (plausible) assumption
that the probability of the evolution of intelligent life increases with time, the solar
system data can be understood separately from the Carter rarity argument.

6 Conclusions

Our main results are summarized in Figure 1 which shows the most probable stellar
lifetimes as a function of the time of appearance of intelligent life, Ti. The median
stellar lifetime associated with an intelligent civilization that evolved in time Ti = 4.5
Gyr is 12.6 Gyr, corresponding to a spectral type of approximately G4, with ≈ ±1σ
range of K5 - G0. For different values of Ti the corresponding stellar lifetimes vary
somewhat but are within 50% of the solar system value.
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FIGURE CAPTION

Fig. 1 Tf as a function of Ti in solar units. Here Ti is the time of appearance of a
set of intelligent observers orbiting habitable stars with lifetimes T > Ti. The fraction
of these habitable stars with lifetimes between Ti and Tf is f . That is, Tf is the lifetime
of the habitable star that divides the distribution into fractions f and (1−f). The thick
solid curve corresponds to f = 1/2 in Eqs. (11) and (13) and gives the median intelligent
star lifetime as a function of the specified Ti; i.e., in the set consisting of all civilizations
that have the same given biological timescale Ti, half will find themselves around stars
of lifetime ≥ Tf=1/2 and half will find themselves around stars of lifetime ≤ Tf=1/2. The
two thin solid curves are for f = 1/6 and 5/6 and approximately bracket the ±1σ region.
Thus for a given Ti, approximately 2/3 of the local stars will have a lifetime, T, lying
between Tf=1/6 and Tf=5/6, the region noted as Most Probable in the figure. From Eq.
(9), the f = 0 dashed line corresponds to Tf = Ti and, since intelligent life must evolve
before the end of the life of the star, the phase space below this curve is excluded and
noted Impossible in the figure. Correspondingly, f = 1 implies Tf = Tmax = 103. The
location of the solar system is indicated by the ⊕ symbol and it can be seen that the sun
lies near the median for Ti = 0.45. Though the number distribution φi(Ti) is unknown,
realizable Ti’s must be less than the age of the Galaxy, Log(Tgal) = 0.
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