Math 566 - Homework 8
SOLUTIONS
Prof Arturo Magidin

1. Let f =ag+ a1z + -+ apa™ € Z[z] be primitive, a,, # 0, and let p be a prime number. Let
f=ao+aiz+ - +a,2" € Zylzl,

where @ is the image of a in Z, under the canonical map Z — Z, from the integers to the integers
modulo p.

(i) Show that if f is monic and f is irreducible in Z,[x] for some prime p, then f is irreducible
in Z[z].
Proof. Suppose that f = gh with g, h € Z[z]. Since f is monic, the leading coefficients of
g and h are both units and multiply to 1, so they are both equal to 1 or both equal to —1.
Multiplying each by —1 if necessary, we may assume that both g and h are monic.
Reducing modulo p, we obtain that f = gh; since g and h are monic, deg(g) = deg(g) and
deg(h) = deg(h). Since f is irreducible, then one of h or g is a unit, hence of degree 0, and so
either g is constant (and being monic, equal to 1) or h is constant (and being monic, equal
to 1). This shows that any factorization of f into a product of two polynomials always has
one factor be a unit, so f is irreducible in Z[z], as claimed. O

(ii) Show the result still holds if we replace “f is monic” with “a,, is not a multiple of p”.

Proof. In the argument above, instead of concluding that we may take g and h both monic,
we have that g and h both have leading coefficient which is not a multiple of p; that suffices
to show that deg(g) = deg(g) and deg(h) = deg(h); so we can still conclude that either g or
h are constant. Now we use the assumption that f is primitive to conclude that both g and
h are primitive, and a constant primitive polynomial in Z[z] must be either 1 or —1, that is

a unit. So again we get that f is irreducible.

(iii) Give an example to show that the conclusion may fail to hold if a,, is divisible by p.
Answer. Consider f(x) = 322+ 42 +1 = (z + 1)(3z + 1). This is a primitive reducible
polynomial in Z[z]. If we take p = 3 and reduce, we get f(x) = Iz + 1, which is degree 1 and
hence irreducible. So even though the polynomial is primitive and the reduction modulo p
is irreducible, the original polynomial is not irreducible. [

2. Prove that if F' is a field, and n > 2, then F|xy,...,%,] is not a PID.

Proof. We proved in the last homework that if D is a domain and ¢ € D is irreducible, then
(z,¢) is not principal in D[z].

Since z7 is an irreducible element in the domain Flzq,...,2,—1], then (z1,2,) is an ideal in
Flz1,...,zp_1][xn] = Flz1,...,z,] that is not principal. So F[z1,...,2,] is not a PID. O
3. In Z, given any n > 1, for every a > 0 there exist unique r > 0, and integers ag, . .., a,, 0 < a; < n,

a, # 0, such that

a=ag+an+amn?+---+an";
that is, we can write every number in “base n”, and the digits are uniquely determined. Prove
the following analog for polynomials:

Let F be a field, and let g € F[z], deg(g) > 1. Prove that for every nonzero f € F[x] there exist
unique 7 > 0 and polynomials fy, ..., f, € Flx], each f; either equal to 0 or with deg(f;) < deg(g),
and f, # 0, such that

f=f+fig+ -+ frg"

that is, we can express every polynomial uniquely in “base g.”



Proof. The idea is the same as for numbers: divide by g and take the remainder to get fy; then
take the quotient and divide by g, and the remainder is fi; etc.

EXISTENCE. We proceed by induction on deg(f). Assume the result holds for all polynomials of
degree smaller than deg(f).
If deg(f) < deg(g), then take r = 0 and fo = f. Then f = f; and we are done.

If deg(f) > deg(g), then we can write f = gg + h, with b = 0 or deg(h) < deg(g); set fo = h.
Now note that ¢ # 0, since deg(f) > deg(g), and that deg(qg) = deg(f — h) = deg(f) (since
either h = 0 or else deg(h) < deg(f)); therefore, deg(q) = deg(f) — deg(g) < deg(f). Thus, by
the induction hypothesis, we can write

q=q+qg+- - +q9°

where ¢; are polynomials, each either equal to 0 or with deg(g;) < deg(g), and ¢s # 0. Therefore,

f=fotag=fo+(@+ag+ - +49°)9= fo+aqg+ag*+ - +q9g°

Set r =s+1, and f; = ¢;—1 for ¢ = 1,...,r. This gives an expression for f in the desired form,
completing the induction.

UNIQUENESS. We proceed by induction on deg(f). Assume the result holds for all polynomials
of degree strictly smaller than deg(f).
Let

f=fo+fig+-+frg"=ho+hig+ - +hsg”

Setting ¢1 = (f1 + fog+ -+ + frg" %) and g2 = hy + hag + - -+ + hsg®* 1, we note that

f=fo+aqg=ho+ qg,

and each of fy, hg is either 0 or of degree strictly smaller than g. By the uniqueness clause of
the Division Algorithm for polynomials, we conclude that fy = hg and ¢; = g2. Now notice that
q1 and g have degree strictly smaller than f, so applying the induction hypothesis to the two

expressions

Gq=q@=fi+fg+ -+ frg " =hi+hag+-+hsg"!

we conclude that r —1 = s — 1 and that f; = hy, fo = ho,..., fr = h,. Thus, r =s and f; = h;

for i =0,...,r, proving uniqueness. [

. We prove Schénemann’s Irreducibility Criterion. Let f(z) € Z[z] be a polynomial with
integer coefficients, deg(f) = n > 0, and assume that there exists a prime p, and integer a, and a
polynomial F(x) € Z[z] such that

flx)=(z —a)" +pF(z) and F(a)#0 (mod p).
We will prove that if this occurs, then f(x) is irreducible in Q[z].

(i) Show that the leading coefficient of f is not divisible by p.

Proof. Note that deg(F(x)) < n (since deg(g + h) < max(degg,degh), with equality if
deg(g) # deg(h)). Write

f@)=ay+az+ - +ana”,
f($)=b0+b15€—|—"~—|—bn$n,

where a,, # 0, but we allow b, = 0. Since (x — a)™ = z" + terms of lower degree, we have
an = 1+ pb,. Therefore, a,, =1 (mod p), so a,, is not divisible by p. O



(i)

(iii)

Assume that f(z) = G(z)H () with G(z), H(z) polynomials with integer coefficients. Let
f(z), G(z) and H(x) denote the images of f(z), G(x), and H(x) in (Z/pZ)[x] obtained
by reducing the coefficients modulo p. Prove that we have deg(G(z)) = deg(G(z)) and
deg(H(z)) = deg(H(x)).

Proof. The leading coefficient of f(z), an, is the product of the leading coefficient of G
and the leading coefficient of H. Since p does not divide a,, p cannot divide the leading
coefficient of G nor the leading coefficient of H, so when we reduce modulo p, the leading
coefficient of G(z) is the reduction modulo p of the leading coefficient of G(x) (which is not
zero). So deg(G(z)) = deg(G(z)), as claimed. Same argument holds for H(z). O

Show that G(z) = (¢ —@)* and H(x) = (z — @)’ for some nonnegative integers i,j with
1+7=mn.

Proof. Note that Z/pZ is a field, so the ring of polynomials with coefficients in Z/pZ is a
Euclidean domain, hence a Unique Factorization Domain. Since f(z) = (z — a)" + pF(z), it
follows that

n

f@)=(@—a)" +pF(@)=(z—a) +pF(@)=(z—a) =(z—a)"

Since f(z) = G(x) H(z), by unique factorization we must have G(z) = (z — a)!, H(x) =

(x —@)? for some nonnegative integers ¢ and j with ¢ + j = n, as claimed. O
Show that if i, 7 > 0, then G(a) = H(a) =0 (mod p).
Proof. Since G(z) = (x —a)?, it follows that if i > 0, then

Gla)=@-a) =0,

so G(a) =0 (mod p); similarly, if j > 0, then H(a) = (@—a)’ =0, so H(a) =0 (mod p). O
Show that if 4, > 0, then pF(a) =0 (mod p?), and reach a contradiction.

Proof. Since each of G(a) and H(a) are divisible by p, then G(a)H (a) is divisible by pZ.
Therefore,

0=G(a)H(a) (mod p?)
= f(a) (mod p?)
=(a—a)" +pF(a) (mod p?)
=pF(a) (mod p?).
But if pF(a) =0 (mod p?), then F(a) =0 (mod p), which contradicts our assumption that
F(a) #0 (mod p). O

Conclude that f(z) is irreducible in Q[x].

Proof. If f(x) is reducible in Q[z], then by Gauss’s Lemma and its corollaries we can express
f(x) as a product of two nonconstant polynomials f(x) = G(x)H (x), with G(x), H(x) € Z[x].
But in that case, from (iii) we would conclude that G(z) = (¢ — @)’ with i > 0, and
H(z) = (z —a)? with j > 0, which yields a contradiction as in (v). Therefore, f(z) must be
irreducible in Q[z], as claimed. O




