
Math 566 - Homework 8
Solutions

Prof Arturo Magidin

1. Let f = a0 + a1x+ · · ·+ anx
n ∈ Z[x] be primitive, an ̸= 0, and let p be a prime number. Let

f = a0 + a1x+ · · ·+ anx
n ∈ Zp[x],

where a is the image of a in Zp under the canonical map Z → Zp from the integers to the integers
modulo p.

(i) Show that if f is monic and f is irreducible in Zp[x] for some prime p, then f is irreducible
in Z[x].
Proof. Suppose that f = gh with g, h ∈ Z[x]. Since f is monic, the leading coefficients of
g and h are both units and multiply to 1, so they are both equal to 1 or both equal to −1.
Multiplying each by −1 if necessary, we may assume that both g and h are monic.

Reducing modulo p, we obtain that f = gh; since g and h are monic, deg(g) = deg(g) and
deg(h) = deg(h). Since f is irreducible, then one of h or g is a unit, hence of degree 0, and so
either g is constant (and being monic, equal to 1) or h is constant (and being monic, equal
to 1). This shows that any factorization of f into a product of two polynomials always has
one factor be a unit, so f is irreducible in Z[x], as claimed. □

(ii) Show the result still holds if we replace “f is monic” with “an is not a multiple of p”.

Proof. In the argument above, instead of concluding that we may take g and h both monic,
we have that g and h both have leading coefficient which is not a multiple of p; that suffices
to show that deg(g) = deg(g) and deg(h) = deg(h); so we can still conclude that either g or
h are constant. Now we use the assumption that f is primitive to conclude that both g and
h are primitive, and a constant primitive polynomial in Z[x] must be either 1 or −1, that is
a unit. So again we get that f is irreducible.

(iii) Give an example to show that the conclusion may fail to hold if an is divisible by p.

Answer. Consider f(x) = 3x2 + 4x + 1 = (x + 1)(3x + 1). This is a primitive reducible
polynomial in Z[x]. If we take p = 3 and reduce, we get f(x) = 1x+1, which is degree 1 and
hence irreducible. So even though the polynomial is primitive and the reduction modulo p
is irreducible, the original polynomial is not irreducible. □

2. Prove that if F is a field, and n ≥ 2, then F [x1, . . . , xn] is not a PID.

Proof. We proved in the last homework that if D is a domain and c ∈ D is irreducible, then
(x, c) is not principal in D[x].

Since x1 is an irreducible element in the domain F [x1, . . . , xn−1], then (x1, xn) is an ideal in
F [x1, . . . , xn−1][xn] = F [x1, . . . , xn] that is not principal. So F [x1, . . . , xn] is not a PID. □

3. In Z, given any n > 1, for every a > 0 there exist unique r ≥ 0, and integers a0, . . . , ar, 0 ≤ ai < n,
ar ̸= 0, such that

a = a0 + a1n+ a2n
2 + · · ·+ arn

r;

that is, we can write every number in “base n”, and the digits are uniquely determined. Prove
the following analog for polynomials:

Let F be a field, and let g ∈ F [x], deg(g) ≥ 1. Prove that for every nonzero f ∈ F [x] there exist
unique r ≥ 0 and polynomials f0, . . . , fr ∈ F [x], each fi either equal to 0 or with deg(fi) < deg(g),
and fr ̸= 0, such that

f = f0 + f1g + · · ·+ frg
r;

that is, we can express every polynomial uniquely in “base g.”
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Proof. The idea is the same as for numbers: divide by g and take the remainder to get f0; then
take the quotient and divide by g, and the remainder is f1; etc.

Existence. We proceed by induction on deg(f). Assume the result holds for all polynomials of
degree smaller than deg(f).

If deg(f) < deg(g), then take r = 0 and f0 = f . Then f = f0 and we are done.

If deg(f) ≥ deg(g), then we can write f = qg + h, with h = 0 or deg(h) < deg(g); set f0 = h.
Now note that q ̸= 0, since deg(f) ≥ deg(g), and that deg(qg) = deg(f − h) = deg(f) (since
either h = 0 or else deg(h) < deg(f)); therefore, deg(q) = deg(f) − deg(g) < deg(f). Thus, by
the induction hypothesis, we can write

q = q0 + q1g + · · ·+ qsg
s

where qi are polynomials, each either equal to 0 or with deg(qi) < deg(g), and qs ̸= 0. Therefore,

f = f0 + qg = f0 + (q0 + q1g + · · ·+ qsg
s)g = f0 + q0g + q1g

2 + · · ·+ qsg
s+1.

Set r = s + 1, and fi = qi−1 for i = 1, . . . , r. This gives an expression for f in the desired form,
completing the induction.

Uniqueness. We proceed by induction on deg(f). Assume the result holds for all polynomials
of degree strictly smaller than deg(f).

Let
f = f0 + f1g + · · ·+ frg

r = h0 + h1g + · · ·+ hsg
s.

Setting q1 = (f1 + f2g + · · ·+ frg
r−1) and q2 = h1 + h2g + · · ·+ hsg

s−1, we note that

f = f0 + q1g = h0 + q2g,

and each of f0, h0 is either 0 or of degree strictly smaller than g. By the uniqueness clause of
the Division Algorithm for polynomials, we conclude that f0 = h0 and q1 = q2. Now notice that
q1 and q2 have degree strictly smaller than f , so applying the induction hypothesis to the two
expressions

q1 = q2 = f1 + f2g + · · ·+ frg
r−1 = h1 + h2g + · · ·+ hsg

s−1

we conclude that r − 1 = s− 1 and that f1 = h1, f2 = h2, . . . , fr = hr. Thus, r = s and fi = hi

for i = 0, . . . , r, proving uniqueness. □

4. We prove Schönemann’s Irreducibility Criterion. Let f(x) ∈ Z[x] be a polynomial with
integer coefficients, deg(f) = n > 0, and assume that there exists a prime p, and integer a, and a
polynomial F(x) ∈ Z[x] such that

f(x) = (x− a)n + pF(x) and F(a) ̸≡ 0 (mod p).

We will prove that if this occurs, then f(x) is irreducible in Q[x].

(i) Show that the leading coefficient of f is not divisible by p.

Proof. Note that deg(F(x)) ≤ n (since deg(g + h) ≤ max(deg g,deg h), with equality if
deg(g) ̸= deg(h)). Write

f(x) = a0 + a1x+ · · ·+ anx
n,

F(x) = b0 + b1x+ · · ·+ bnx
n,

where an ̸= 0, but we allow bn = 0. Since (x − a)n = xn + terms of lower degree, we have
an = 1 + pbn. Therefore, an ≡ 1 (mod p), so an is not divisible by p. □
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(ii) Assume that f(x) = G(x)H(x) with G(x), H(x) polynomials with integer coefficients. Let
f(x), G(x) and H(x) denote the images of f(x), G(x), and H(x) in (Z/pZ)[x] obtained
by reducing the coefficients modulo p. Prove that we have deg(G(x)) = deg(G(x)) and
deg(H(x)) = deg(H(x)).

Proof. The leading coefficient of f(x), an, is the product of the leading coefficient of G
and the leading coefficient of H. Since p does not divide an, p cannot divide the leading
coefficient of G nor the leading coefficient of H, so when we reduce modulo p, the leading
coefficient of G(x) is the reduction modulo p of the leading coefficient of G(x) (which is not
zero). So deg(G(x)) = deg(G(x)), as claimed. Same argument holds for H(x). □

(iii) Show that G(x) = (x − a)i and H(x) = (x − a)j for some nonnegative integers i, j with
i+ j = n.

Proof. Note that Z/pZ is a field, so the ring of polynomials with coefficients in Z/pZ is a
Euclidean domain, hence a Unique Factorization Domain. Since f(x) = (x− a)n + pF(x), it
follows that

f(x) = (x− a)n + pF(x) = (x− a)
n
+ pF(x) = (x− a)

n
= (x− a)n.

Since f(x) = G(x)H(x), by unique factorization we must have G(x) = (x − a)i, H(x) =
(x− a)j for some nonnegative integers i and j with i+ j = n, as claimed. □

(iv) Show that if i, j > 0, then G(a) ≡ H(a) ≡ 0 (mod p).

Proof. Since G(x) = (x− a)i, it follows that if i > 0, then

G(a) = (a− a)i = 0,

so G(a) ≡ 0 (mod p); similarly, if j > 0, then H(a) = (a−a)j = 0, so H(a) ≡ 0 (mod p). □

(v) Show that if i, j > 0, then pF(a) ≡ 0 (mod p2), and reach a contradiction.

Proof. Since each of G(a) and H(a) are divisible by p, then G(a)H(a) is divisible by p2.
Therefore,

0 ≡ G(a)H(a) (mod p2)

≡ f(a) (mod p2)

≡ (a− a)n + pF(a) (mod p2)

≡ pF(a) (mod p2).

But if pF(a) ≡ 0 (mod p2), then F(a) ≡ 0 (mod p), which contradicts our assumption that
F(a) ̸≡ 0 (mod p). □

(vi) Conclude that f(x) is irreducible in Q[x].

Proof. If f(x) is reducible in Q[x], then by Gauss’s Lemma and its corollaries we can express
f(x) as a product of two nonconstant polynomials f(x) = G(x)H(x), with G(x), H(x) ∈ Z[x].
But in that case, from (iii) we would conclude that G(x) = (x − a)i with i > 0, and
H(x) = (x− a)j with j > 0, which yields a contradiction as in (v). Therefore, f(x) must be
irreducible in Q[x], as claimed. □
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