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Abstract. We develop a stage-structured model that describes the dynamics of two competing
species each of which have sexual and clonal reproduction. This is typical of many plants including
irises. We first analyze the dynamical behavior of a single species model. We show that when the
inherent net reproductive number is smaller than one then the population will go to extinction and if
it is larger than one then an interior equilibrium exists and it is globally asymptotically stable. Then
we analyze the two-species model and establish conditions on the reproduction and survivorship
rates that lead to competitive exclusion. We show that the winner species is the one that attains
higher density at which its net reproductive number equals unity. Numerical results corroborating
the theoretical ones are also presented.
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1. Introduction
Competition among species is very common. It can be considered as a relationship between organ-
isms or species, in which members of individuals are adversely affected by the presence of those
requiring the same living resources. For example, two plants growing close to each other compete
for the same resources such as light, space, water and nutrients. If the environmental resources
are not sufficient, then both plants will not perform as well as when they are growing alone. If
the competing members are of the same species, then the interaction between them is known as
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intraspecific competition. While if competing members are of different species then such inter-
action is called interspecific competition. The Louisiana blue flag iris (I. hexagona) [14] and the
cultivated yellow flag iris (I. pseudacorus) [11] living in the Louisiana Gulf Coast provide such an
example. These two iris species have similar life history and are ecologically closely related. Both
of them reproduce clonally and sexually and endure a wide range of environmental conditions [10].
However, some recent research [10, 12, 13] shows that they respond differently to salinity stress.

In [10], the authors develop a quantitative stage-structured model as a tool to investigate the
dynamics of these two competing iris populations. By using empirical data for model parameters
and applying Monte Carlo simulations, the authors show that competitive exclusion occurs between
these two species, where yellow iris excludes the blue iris in about 82% of encounters in freshwater
habitats. While the blue iris excludes the yellow iris in 99% of encounters in brackish marsh [10].

The purpose of this paper is to investigate theoretically the dynamics of two ecologically similar
species under competition, such as the blue and yellow irises, and to understand the conditions
under which competitive exclusion between these populations occurs. To this end, in Section
2, we develop and analyze a stage-structured one-species model which describes the dynamics
of one population with intraspecific competition. Then in Section 3, we present a two-species
model which describes the dynamics of two populations with interspecific competition and provide
conditions on the net reproductive number that leads to competitive exclusion. In Section 4, we
provide numerical results and in Section 5 we present a few concluding remarks. Finally, in the
Appendix we recall two results that are needed to establish the global stability in this paper.

2. Three-Stage Single-Species Model
We assume that the population is divided into three stages: seeds, juveniles (seedlings), and adults
(flowering plants) which produce seeds via sexual reproduction and juveniles via clonal reproduc-
tion. We denote by xt, yt, zt the number of seeds, juveniles and adults, respectively, at time t.
Let s1 represent the survivorship of the seeds which is assumed to be constant. Let s2(yt + zt)
represent the survivorship of the juveniles at time t, and s3(yt + zt) represent the survivorship of
the adults at time t which are assumed to be density dependent due to competition for resources
between juveniles and adults. We denote by b1 the number of seeds produced by adults per time
step (sexual reproduction rate) and by b2 the number of juveniles (seedlings) formed by adults per
time step (clonal reproduction rate). We assume that the time unit is chosen such that the seeds and
juveniles move to the next stage in one time step (for irises the time step can be chosen to be one
year [10]). We consider the following three-stage discrete model:





xt+1 = b1zt

yt+1 = s1xt + b2zt

zt+1 = s2(yt + zt)yt + s3(yt + zt)zt

(x0, y0, z0) ∈ R3
+ \ (0, 0, 0).

(2.1)

We assume si, i = 1, 2, 3 have the following properties:
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(Σ1) s1 is a constant such that 0 < s1 < 1. s2(0) ≤ s3(0) and s′2(x) ≤ s′3(x) < 0. In addition, for
i = 2, 3, si(x) ∈ C1[0,∞), (si(x)x)′ > 0, limx→∞ si(x) = 0, limx→∞ si(x)x = âi < ∞,
and si(0) = ai (0 < ai < 1).

Note that (Σ1) implies that s2(x) ≤ s3(x). Also, (Σ1) is satisfied by the following Beverton-Holt
dynamics [3] which were utilized in [10]:

si(x) =
ai

1 + kix
, i = 2, 3,

provided that a2 ≤ a3 and k3 ≤ k2.
In this section, we prove that if the inherent net reproductive number is greater than one, then

system (2.1) has a unique interior equilibrium, which is globally asymptotically stable. We begin
by finding the inherent net reproductive number. We first rewrite the system in the following matrix
form:

Xt+1 = M(Xt)Xt,

where

M(X) =




0 0 b1

s1 0 b2

0 s2(y + z) s3(y + z)


 .

Hence,
X ≤ Y implies M(X) ≥ M(Y ), (2.2)

where the vector and matrix inequalities hold componentwise.
Then the inherent projection matrix [5] can be written as follows:

M(0) =




0 0 b1

s1 0 b2

0 a2 a3


 = G + F,

where

G =




0 0 0
s1 0 0
0 a2 a3


 ,

and

F =




0 0 b1

0 0 b2

0 0 0


 .

By [4, 5, 7], the inherent net reproductive number R0 is the positive, simple, and strictly dominant
eigenvalue of the next generation matrix F (I −G)−1. Thus, we have

R0 :=
b1s1a2 + a2b2

1− a3

.
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Lemma 1. There exists a compact set K ∈ R3
+ such that every forward solution sequence of (2.1)

enters K in at most three time steps, and remains in K ever after.

Proof. From (Σ1), we have that

zt+1 = s2(yt + zt)yt + s3(yt + zt)zt

≤ s3(yt + zt)yt + s3(yt + zt)zt

= s3(yt + zt)(yt + zt)
≤ â3,∀t = 0, 1, ...

It follows that
zt ≤ â3,∀t = 1, 2, ...

Therefore,
xt+1 = b1zt ≤ b1â3,∀t = 1, 2, ...

and hence
xt ≤ b1â3,∀t = 2, 3, ...

Similarly,
yt+1 = s1xt + b2zt ≤ s1b1â3 + b2â3,∀t = 2, 3, ...

and
yt ≤ (s1b1 + b2)â3,∀t = 3, 4, ...

Define K = {(x, y, z) ∈ R3
+ | x ∈ [0, b1â3], y ∈ [0, (s1b1 + b2)â3], z ∈ [0, â3]}, then every forward

solution sequence enters K in at most three time steps and stays in K forever after.

We now state the following theorem for the global dynamics of (2.1):

Theorem 1. Concerning the system (2.1) we have the following:

a) If R0 < 1, then system (2.1) only has the trivial equilibrium E0 = (0, 0, 0) which is globally
asymptotically stable in R3

+ \ (0, 0, 0).

b) If R0 > 1, then E0 is unstable and system (2.1) has a unique interior equilibrium E1 =
(x̂, ŷ, ẑ) which is globally asymptotically stable in R3

+ \ (0, 0, 0).

Proof. a) Let R0 < 1. Clearly the model (2.1) has no boundary equilibrium other than the trivial
one. Suppose that (x̂, ŷ, ẑ) is an interior equilibrium of (2.1). Then this equilibrium must satisfy

1 = b1s1s2(y + z) + b2s2(y + z) + s3(y + z) =: F (y + z). (2.3)

Notice that F (y + z) is a strictly decreasing function of y + z by (Σ1), with F (0) = b1s1a2 +
b2a2 +a3, and limφ→∞ F (φ) = 0. Thus, equation (2.3) has a unique positive solution if and only if

b1s1a2 + b2a2 + a3 > 1.
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From this and (2.1) it follows that the interior equilibrium is unique whenever it exists. Note that
the above inequality is equivalent to

R0 =
b1s1a2 + a2b2

1− a3

> 1.

Therefore, since R0 < 1, there is no nontrivial equilibrium for system (2.1).
Notice that the inherent projection matrix M(0) of system (2.1) is nonnegative, irreducible,

and primitive, it follows from [5] (Theorem 1.1.3, p.10) that it has a positive, simple, and strictly
dominant eigenvalue r. And since R0 < 1, we have r < 1. Hence, limt→∞ M t(0) = 0. So with
any initial value X0 > 0, we have that 0 ≤ X1 = M(X0)X0 ≤ M(0)X0 by (2.2). Repeating this
gives that 0 ≤ Xt ≤ M t(0)X0. Since limt→∞ M t(0)X0 = 0, we have limt→∞ Xt = 0.

b) Suppose R0 > 1. By Theorem 1.1.3 [5], M(0) has a positive, strictly dominant eigenvalue
greater than 1. Thus, E0 is unstable. Clearly, from the argument in part a) the model (2.1) has a
unique interior equilibrium E1 = (x̂, ŷ, ẑ). We now show that E1 is locally asymptotically stable.
Using the short notation si instead of si(ŷ + ẑ) and s′i instead of s′i(ŷ + ẑ), i = 2, 3, we see that the
linearized system of (2.1) at E1 has a coefficient matrix

J(E1) =




0 0 b1

s1 0 b2

0 s′2ŷ + s2 + s′3ẑ s′2ŷ + s′3ẑ + s3


 .

Let J13 = b1, J21 = s1, J23 = b2, J32 = s′2ŷ + s2 + s′3ẑ and J33 = s′2ŷ + s′3ẑ + s3. Then the
eigenvalues λ of J(E1) satisfy p1(λ) = λ3 − J33λ

2 − J23J32λ − J13J21J32 = 0. So applying the
Jury conditions [2, 8], and using 1 = b1s1s2 + b2s2 + s3 we have the following:

p1(1) = 1− J33 − J23J32 − J13J21J32

= b1s1s2 + b2s2 + s3 − s′2ŷ − s′3ẑ − s3 − b2(s
′
2ŷ + s2 + s′3ẑ)

−b1s1(s
′
2ŷ + s2 + s′3ẑ)

= −s′2ŷ − s′3ẑ − b2(s
′
2ŷ + s′3ẑ)− b1s1(s

′
2ŷ + s′3ẑ)

and
p1(−1) = −1− J33 + J23J32 − J13J21J32

= −b1s1s2 − b2s2 − s3 − s′2ŷ − s′3ẑ − s3 + b2(s
′
2ŷ + s2 + s′3ẑ)

−b1s1(s
′
2ŷ + s2 + s′3ẑ)

= −b1s1(s2 + s′3ẑ)− (s3 + s′2ŷ)− (s′3ẑ + s3)
+b2(s

′
2ŷ + s′3ẑ)− b1s1(s

′
2ŷ + s2).

By (Σ1), s′i < 0, for i = 2, 3. Hence, p1(1) > 0. Also, by (Σ1), we know that s2 ≤ s3 and
(si(x)x)′ > 0, for i = 2, 3. So s′2ŷ + s′2ẑ + s2 > 0 and s′3ŷ + s′3ẑ + s3 > 0. It follows that
s3 + s′3ẑ ≥ s2 + s′3ẑ ≥ s2 + s′2ẑ > 0 and s3 + s′2ŷ ≥ s2 + s′2ŷ > 0. Thus, p1(−1) < 0.

Now, we proceed to verify the last inequality of Jury conditions: 1− (J13J21J32)
2 − |J23J32 +

J13J21J32J33| > 0. Replacing 1 by the square of b1s1s2 + b2s2 + s3 gives

1 = b2
1s

2
1s

2
2 + 2b1s1s2(b2s2 + s3) + b2

2s
2
2 + 2b2s2s3 + s2

3.
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Thus,

1− (J13J21J32)
2 − |J23J32 + J13J21J32J33|

= (b1s1s2 + b2s2 + s3)
2 − b2

1s
2
1(s

′
2ŷ + s2 + s′3ẑ)2 − b2(s

′
2ŷ + s2 + s′3ẑ)

−b1s1(s
′
2ŷ + s2 + s′3ẑ)(s′2ŷ + s3 + s′3ẑ)

= b2
1s

2
1s

2
2 + 2b1s1s2(b2s2 + s3) + b2

2s
2
2 + 2b2s2s3 + s2

3 − b2
1s

2
1(s

′
2ŷ + s2 + s′3ẑ)2

−b1s1[(s
′
2ŷ + s′3ẑ)2 + s2s3 + s2(s

′
2ŷ + s′3ẑ) + s3(s

′
2ŷ + s′3ẑ)]

−b2s2 − b2(s
′
2ŷ + s′3ẑ)

= b2
1s

2
1s

2
2 − b2

1s
2
1(s

′
2ŷ + s2 + s′3ẑ)2 + b1s1s2s3 − b1s1(s

′
2ŷ + s′3ẑ)2

+b2s2(2b1s1s2 + b2s2 + 2s3 − 1)− b1s1[s2(s
′
2ŷ + s′3ẑ) + s3(s

′
2ŷ + s′3ẑ)]

+s2
3 − b2(s

′
2ŷ + s′3ẑ).

Since 1 > s2 > s′2ŷ+s2+s′3ẑ ≥ s′2ŷ+s2+s′2ẑ > 0, it follows that b2
1s

2
1s

2
2 > b2

1s
2
1(s

′
2ŷ+s2+s′3ẑ)2.

Also, since s2 > |s′2ŷ + s′3ẑ| and s3 > |s′2ŷ + s′3ẑ|, then s2s3 > (s′2ŷ + s′3ẑ)2. So b1s1s2s3 −
b1s1(s

′
2ŷ + s′3ẑ)2 = b1s1[s2s3 − (s′2ŷ + s′3ẑ)2] > 0. Moreover, using 1 = b1s1s2 + b2s2 + s3 gives

b2s2(2b1s1s2 + b2s2 + 2s3 − 1) = b2s2(b1s1s2 + s3) > 0. Note the rest terms are all positive. So
the above expression is positive. Therefore, E1 is locally asymptotically stable.

Next, we show that E1 is globally attracting by using a similar approach as in [1]. Since every
solution starting on the boundary of R3

+ \ (0, 0, 0) enters the positively invariant set Int(R3
+) in

at most 3 time steps, it suffices to prove the global asymptotic stability for solutions in Int(R3
+).

Also by Lemma 1, every solution sequence enters K in at most three time steps and stays in K.
So we can consider X0 = (x0, y0, z0) ∈ Int(R3

+) ∩ K. Clearly, the unique positive equilibrium
E1 = (x̂, ŷ, ẑ) is in K.

Define b := supK (the maximal element in K). So by Lemma 1, T (b) ≤ b, where T denotes
the right hand side of (2.1), i.e., T (X) = M(X)X . We say a map f : Rn → Rn is monotone if
X ≤ Y implies f(X) ≤ f(Y ). Clearly the Jacobian matrix of the map T is given by

D(T (X)) =




0 0 b1

s1 0 b2

0 s′2y + s2 + s′3z s′2y + s′3z + s3


 .

Note that s′2y + s′3z + s3 ≥ s′2y + s2 + s′3z ≥ s′2y + s2 + s′2z = (s2(y + z)(y + z))′ > 0. Thus,
since the elements of D(T (X)) are all nonnegative, we have that the map T is monotone.

Since M(0) is irreducible and nonnegative, its spectral radius r(> 1) is an eigenvalue with a
corresponding positive eigenvector v such that M(0)v = rv. Since r > 1, for all ε > 0 small
enough, we have T (εv) = M(εv)εv = rεv + o(ε) ≥ εv. Then for any given X0 ∈ Int(R3

+) ∩ K,
we can choose a sufficiently small ε > 0 such that a := εv ≤ X0, i.e. a ≤ T (a). So by Lemma 2
in the Appendix, E1 is globally asymptotically stable.

3. Two-Species Model and Competitive Exclusion
In this section, we are interested in investigating the interaction between two similar species. We
assume that each of the species can be modeled by a stage-structured model of the form (2.1). For
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convenience we let φA
t = yA

t +zA
t be the total number of plants (juveniles and adults) for species A,

φB
t = yB

t + zB
t be the total number of plants for species B, and φt = φA

t + φB
t be the total number

of plants for both species. We assume that due to competition, the survivorship of juveniles and
adults for both species depend on φ, the total number of plants. This leads to the following six
difference equation two-species model:





xA
t+1 = bA

1 zA
t

yA
t+1 = sA

1 xA
t + bA

2 zA
t

zA
t+1 = sA

2 (φt)y
A
t + sA

3 (φt)z
A
t

xB
t+1 = bB

1 zB
t

yB
t+1 = sB

1 xB
t + bB

2 zB
t

zB
t+1 = sB

2 (φt)y
B
t + sB

3 (φt)z
B
t

(xA
0 , yA

0 , zA
0 ) ∈ R3

+ \ (0, 0, 0)

(xB
0 , yB

0 , zB
0 ) ∈ R3

+ \ (0, 0, 0).

(3.1)

The first three equations describe the dynamics of the species A and the next three equations, which
have the same structure as the first three, model the dynamics of species B. The coupling between
the two species is due to the dependency of sA

2 , sA
3 , sB

2 and sB
3 on the total number of plants, φ, of

both species A and B. Here, sA
i , i = 2, 3 satisfy assumption (Σ1) with ai replaced by aA

i and âi

replaced with âA
i . Similarly, sB

i , i = 2, 3 satisfy assumption (Σ1) with ai replaced by aB
i and âi

replaced with âB
i .

We define the net reproductive number of species A and B at density level φ by

RA(φ) =
bA
1 sA

1 sA
2 (φ) + sA

2 (φ)bA
2

1− sA
3 (φ)

,

and

RB(φ) =
bB
1 sB

1 sB
2 (φ) + sB

2 (φ)bB
2

1− sB
3 (φ)

.

If we denote the inherent net reproductive number of species A by RA
0 and of species B by RB

0 ,
then RA

0 = RA(0) and RB
0 = RB(0).

We define
FA(φ) = bA

1 sA
1 sA

2 (φ) + sA
2 (φ)bA

2 + sA
3 (φ),

and
FB(φ) = bB

1 sB
1 sB

2 (φ) + sB
2 (φ)bB

2 + sB
3 (φ).

Notice that FA(φ) and FB(φ) are decreasing functions with

lim
φ→∞

FA(φ) = 0 and lim
φ→∞

FB(φ) = 0.

Furthermore, FA(0) > 1 if and only if RA
0 > 1, and FB(0) > 1 if and only if RB

0 > 1. Thus, if
RA

0 > 1 and RB
0 > 1 then there exist unique φ̂A and φ̂B such that FA(φ̂A) = 1 and FB(φ̂B) = 1.
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Clearly, model (3.1) has the trivial equilibrium denoted by E0 = (0, 0, 0, 0, 0, 0). Further-
more, if RA

0 > 1 and RB
0 > 1, then from Section 2, we know each species (living alone) has

a positive (globally asymptotically stable) fixed point. Denote this equilibrium for species A by
EA = (x̂A, ŷA, ẑA) and for species B by EB = (x̂B, ŷB, ẑB). Thus, it follows that model (3.1) has
two nontrivial boundary equilibria given by E1 = (EA, 0) ∈ R6

+ and E2 = (0, EB) ∈ R6
+. Note

that in this case φ̂A = ŷA + ẑA for E1 and φ̂B = ŷB + ẑB for E2. We now have the following
theorem:

Theorem 2. Assume that RA
0 > 1 and RB

0 > 1. Concerning the system (3.1) we have the following:

a) If φ̂A > φ̂B, then E1 = (EA, 0) is locally asymptotically stable and E2 = (0, EB) is
unstable.

b) If φ̂A < φ̂B, then E2 = (0, EB) is locally asymptotically stable and E1 = (EA, 0) is
unstable.

c) If φ̂A = φ̂B, then there exists an interior equilibrium.

Proof. a) The linearized system of (3.1) at E1 has the coefficient matrix

J(E1) =

(
A1 C1

0 B1

)
,

where

A1 =




0 0 bA
1

sA
1 0 bA

2

0 s′A2 (φ̂A)ŷA + sA
2 (φ̂A) + s′A3 (φ̂A)ẑA s′A2 (φ̂A)ŷA + s′A3 (φ̂A)ẑA + sA

3 (φ̂A)


 ,

B1 =




0 0 bB
1

sB
1 0 bB

2

0 sB
2 (φ̂A) sB

3 (φ̂A)


 ,

and

C1 =




0 0 0
0 0 0

0 s′A2 (φ̂A)ŷA + s′A3 (φ̂A)ẑA s′A2 (φ̂A)ŷA + s′A3 (φ̂A)ẑA


 .

Similarly, the linearized system at E2 has the coefficient matrix

J(E2) =

(
A2 0
C2 B2

)
,

where

A2 =




0 0 bA
1

sA
1 0 bA

2

0 sA
2 (φ̂B) sA

3 (φ̂B)


 , (3.2)
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B2 =




0 0 bB
1

sB
1 0 bB

2

0 s′B2 (φ̂B)ŷB + sB
2 (φ̂B) + s′B3 (φ̂B)ẑB s′B2 (φ̂B)ŷB + s′B3 (φ̂B)ẑB + sB

3 (φ̂B)


 ,

and

C2 =




0 0 0
0 0 0

0 s′B2 (φ̂B)ŷB + s′B3 (φ̂B)ẑB s′B2 (φ̂B)ŷB + s′B3 (φ̂B)ẑB


 .

Since RA
0 > 1, it follows by arguments as those in Section 2 that the eigenvalues of A1 are less

than 1 in magnitude. Also, since φ̂A > φ̂B, then FB(φ̂A) < 1, which implies

RB(φ̂A) =
bB
1 sB

1 sB
2 (φ̂A) + sB

2 (φ̂A)bB
2

1− sB
3 (φ̂A)

< 1.

So the positive strictly dominant eigenvalue of B1 is less than 1. Hence, E1 = (EA, 0) is locally
asymptotically stable.

We now show that E2 = (0, EB) is unstable. Since φ̂A > φ̂B, we have FA(φ̂B) > FA(φ̂A) = 1.
Thus,

RA(φ̂B) =
bA
1 sA

1 sA
2 (φ̂B) + sA

2 (φ̂B)bA
2

1− sA
3 (φ̂B)

> 1, (3.3)

which implies that there exists an eigenvalue of A2 with magnitude larger than one. Thus, E2 is
unstable.

b) Follows by similar arguments as in a).

c) From the model (3.1) to have an interior equilibrium the following must hold: there exists a
φ such that

FA(φ) = 1, and FB(φ) = 1,

which clearly holds since φ̂A = φ̂B. We can also see that the φ is not unique and there is a
continuum of interior equilibria.

By Theorem 2, we see that if φ̂A 6= φ̂B then either E1 or E2 is locally asymptotically stable.
We now show that such a stability is indeed global.

Theorem 3. Suppose RA
0 > 1 and RB

0 > 1. Concerning the system (3.1) we have the following:

a) If φ̂A > φ̂B, then E1 = (EA, 0) is a globally asymptotically stable equilibrium in {(XA, XB)
∈ R3

+ × R3
+ : XA 6= 0 and XB 6= 0}.

b) If φ̂A < φ̂B, then E2 = (0, EB) is a globally asymptotically stable equilibrium in {(XA, XB)
∈ R3

+ × R3
+ : XA 6= 0 and XB 6= 0}.
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Proof. a) System (3.1) can be written in the matrix form:

Xt+1 = M(Xt)Xt = T (Xt). (3.4)

Here, Xt = (XA
t , XB

t )tr, XA
t = (xA

t , yA
t , zA

t )tr, XB
t = (xB

t , yB
t , zB

t )tr, and tr denotes the transpose
of a vector. Also, the projection matrix is

M(X) =

(
MA(X) 0

0 MB(X)

)
, (3.5)

where

MA(X) =




0 0 bA
1

sA
1 0 bA

2

0 sA
2 (φ) sA

3 (φ)


 (3.6)

and

MB(X) =




0 0 bB
1

sB
1 0 bB

2

0 sB
2 (φ) sB

3 (φ)


 . (3.7)

Note the map T : R6
+ → R6

+ is continuous. To prove global stability we show that the map T
above satisfies the hypotheses (H1)-(H3) and (H4)′ stated in the Appendix and apply Theorem 4 in
the Appendix.

To verify (H1), suppose X = (XA, XB)tr = (xA, yA, zA, xB, yB, zB)tr, X̄ = (X̄A, X̄B)tr =
(x̄A, ȳA, z̄A, x̄B, ȳB, z̄B)tr ∈ R6

+ and X <K X̄ . Then we have

xA ≤ x̄A, yA ≤ ȳA, zA ≤ z̄A, (3.8)

where at least one of the inequalities in (3.8) is strict, and

xB ≥ x̄B, yB ≥ ȳB, zB ≥ z̄B, (3.9)

where at least one of the inequalities in (3.9) is strict.
Let T (X) = (T1(X), . . . , T6(X))tr, and ∆Ti = Ti(X̄) − Ti(X), i = 1, 2, ..., 6. So we have

the following:
∆T1 = bA

1 (z̄A − zA),
∆T2 = sA

1 (x̄A − xA) + bA
2 (z̄A − zA),

∆T3 = [sA
2 (φ̄)ȳA + sA

3 (φ̄)z̄A]− [sA
2 (φ)yA + sA

3 (φ)zA],
∆T4 = bB

1 (z̄B − zB),
∆T5 = sB

1 (x̄B − xB) + bB
2 (z̄B − zB),

∆T6 = [sB
2 (φ̄)ȳB + sB

3 (φ̄)z̄B]− [sB
2 (φ)yB + sB

3 (φ)zB].

In order to prove T (X) <K T (X̄), we need to show that ∆Ti ≥ 0 for i = 1, 2, 3 with at least
one inequality is strict and ∆Ti ≤ 0 for i = 4, 5, 6 with at least one inequality is strict. By (3.8)
and (3.9), it is easy to see that ∆T1, ∆T2 ≥ 0 and ∆T4, ∆T5 ≤ 0. In fact, if the first or the third
inequality in (3.8) is strict, then either ∆T1 or ∆T2 is strictly positive. Similar for ∆T4 and ∆T5.
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Therefore, in what follows, we assume that the second inequality is strict, i.e., yA < ȳA. Now we
verify that ∆T3 > 0 (If yB > ȳB, then ∆T6 < 0 can be proved in a similar fashion).

As defined previously, φ = φA + φB and φ̄ = φ̄A + φ̄B, where φA = yA + zA, φB = yB + zB,
and φ̄A = ȳA + z̄A, φ̄B = ȳB + z̄B. Then we have two cases:

Case 1: φ < φ̄. Then

∆T3 = [sA
2 (φ̄)ȳA + sA

3 (φ̄)z̄A]− [sA
2 (φ)yA + sA

3 (φ)zA]
= sA

2 (φ̄)φ̄A − sA
2 (φ̄)z̄A + sA

3 (φ̄)z̄A − sA
2 (φ)φA + sA

2 (φ)zA − sA
3 (φ)zA

= sA
2 (φ̄)φ̄− sA

2 (φ̄)φ̄B − sA
2 (φ̄)z̄A + sA

3 (φ̄)z̄A − sA
2 (φ)φ + sA

2 (φ)φB

+sA
2 (φ)zA − sA

3 (φ)zA

= [sA
2 (φ̄)φ̄− sA

2 (φ)φ] + [sA
2 (φ)φB − sA

2 (φ̄)φ̄B]
+z̄A[sA

3 (φ̄)− sA
2 (φ̄)− (sA

3 (φ)− sA
2 (φ))]

+(sA
3 (φ)− sA

2 (φ))(z̄A − zA).

By (Σ1), (si(x)x)′ > 0, s′i(x) < 0. Therefore, sA
2 (φ̄)φ̄− sA

2 (φ)φ > 0. Also,

sA
2 (φ)φB − sA

2 (φ̄)φ̄B = φB(sA
2 (φ)− sA

2 (φ̄)) + (φB − φ̄B)sA
2 (φ̄) > 0.

And sA
3 (φ̄)− sA

2 (φ̄)− (sA
3 (φ)− sA

2 (φ)) =
∫ φ̄

φ
(sA

3 (ξ)− sA
2 (ξ))′ dξ ≥ 0 since s′A3 (φ) ≥ s′A2 (φ).

The last term (sA
3 (φ)− sA

2 (φ))(z̄A − zA) ≥ 0 because sA
3 (φ) ≥ sA

2 (φ) and z̄A ≥ zA.
Thus, ∆T3 > 0.

Case 2: φ ≥ φ̄. Then

∆T3 = sA
2 (φ̄)ȳA + sA

3 (φ̄)z̄A − sA
2 (φ)yA − sA

3 (φ)zA

≥ sA
2 (φ)ȳA + sA

3 (φ)z̄A − sA
2 (φ)yA − sA

3 (φ)zA

= sA
2 (φ)(ȳA − yA) + sA

3 (φ)(z̄A − zA).

Using the conditions ȳA > yA and z̄A ≥ zA, we get ∆T3 > 0 in this case. Hence, (H1) is satisfied.

For (H2), T (0) = 0 is clear. We now show that 0 ∈ R6
+ is a repeller. By (3.5), (3.6) and (3.7),

M(0) =

(
MA(0) 0

0 MB(0)

)
,

where

MA(0) =




0 0 bA
1

sA
1 0 bA

2

0 aA
2 aA

3


 ,

and

MB(0) =




0 0 bB
1

sB
1 0 bB

2

0 aB
2 aB

3


 .
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By assumption, both RA
0 > 1 and RB

0 > 1. And since MA(0) and MB(0) are non-negative,
irreducible and primitive, their dominant eigenvalues λ1 , λ2(> 1) have corresponding left eigen-
vectors v1, v2 > 0, i.e., vtr

1 MA(0) = λ1v
tr
1 , vtr

2 MB(0) = λ2v
tr
2 . Notice that

(vtr
1 , vtr

2 )M(0) = (vtr
1 , vtr

2 )

(
MA(0) 0

0 MB(0)

)
= (vtr

1 MA(0), vtr
2 MB(0)).

Pick λ∗1 ∈ (1, λ1), λ∗2 ∈ (1, λ2), such that vtr
1 MA(0) − λ∗1v

tr
1 > 0 and vtr

2 MB(0) − λ∗2v
tr
2 > 0.

By continuity of M(X), there exists a neighborhood U of (0, 0) ∈ R3
+ × R3

+ such that both
vtr

1 MA(X) − λ∗1v
tr
1 > 0 and vtr

2 MB(X) − λ∗2v
tr
2 > 0. Define P : R3

+ × R3
+ → R+ as P (X) =

(vtr
1 , vtr

2 )X . Then P (X) = 0 for X ∈ U if and only if X = 0, and positive elsewhere in U .
Furthermore,

P (T (X)) = (vtr
1 , vtr

2 )T (X)
= (vtr

1 , vtr
2 )M(X)X

= (vtr
1 , vtr

2 )

(
MA(X) 0

0 MB(X)

)
X

= (vtr
1 MA(X), vtr

2 MB(X))X
> (λ∗1v

tr
1 , λ∗2v

tr
2 )X

> (vtr
1 , vtr

2 )X
= P (X), for any X ∈ U \ {0}.

So the origin 0 ∈ R6
+ is a repelling fixed point.

To verify (H3), first note that from Lemma 1 it follows that T (R3
+ × {0}) ⊂ R3

+ × {0} and
that T ({0}×R3

+) ⊂ {0}×R3
+. Moreover, since RA

0 , RB
0 > 1, there exist two nontrivial boundary

equilibria of (3.1), denoted by (EA, 0) = (x̂A, ŷA, ẑA, 0, 0, 0) and (0, EB) = (0, 0, 0, x̂B, ŷB, ẑB) ∈
R6

+. That is, there exist EA = (x̂A, ŷA, ẑA) and EB = (x̂B, ŷB, ẑB) ∈ R3
+ such that T ((EA, 0)) =

(EA, 0) and T ((0, EB)) = (0, EB).
By our discussion in Section 2, we see that both EA = (x̂A, ŷA, ẑA) and EB = (x̂B, ŷB, ẑB)

are globally asymptotically stable equilibria of the corresponding one-species model. Thus, (H3)
holds.

Finally, we show that (H4)′ is satisfied. Notice that for n ≥ 1,

T n+1
1 = bA

1 T n
3 ,

T n+1
2 = sA

1 T n
1 + bA

2 T n
3 ,

T n+1
3 = sA

2 (φ(T n))T n
2 + sA

3 (φ(T n))T n
3 ,

T n+1
4 = bB

1 T n
6 ,

T n+1
5 = sB

1 T n
4 + bB

2 T n
6 ,

T n+1
6 = sB

2 (φ(T n))T n
5 + sB

3 (φ(T n))T n
6 ,

where T n is the n-fold composition of T and φ(T n) = T n
2 +T n

3 +T n
5 +T n

6 . Suppose that X <K X̄
with

xA < x̄A, yA = ȳA, zA = z̄A.
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and
xB > x̄B, yB = ȳB, zB = z̄B.

Define
∆T n

i = T̄i
n − T n

i ,

for i = 1, 2, . . . , 6 and n ≥ 1. So if n = 1, ∆T1 = ∆T3 = ∆T4 = ∆T6 = 0, ∆T2 > 0 and
∆T5 < 0. Now we see that

∆T 2
1 = bA

1 (T̄3 − T3) = 0,
∆T 2

2 = sA
1 (T̄1 − T1) + bA

2 (T̄3 − T3) = 0,
∆T 2

3 = sA
2 (φ(T̄ ))T̄2 + sA

3 (φ(T̄ ))T̄3 − sA
2 (φ(T ))T2 − sA

3 (φ(T ))T3 > 0.

Similarly, we have that
∆T 2

4 = ∆T 2
5 = 0, and ∆T 2

6 < 0.

Then,

∆T 3
1 = bA

1 (T̄3
2 − T 2

3 ) > 0,

∆T 3
2 = sA

1 (T̄1
2 − T 2

1 ) + bA
2 (T̄3

2 − T 2
3 ) > 0,

∆T 3
3 = sA

2 (φ(T̄ 2))T̄2
2
+ sA

3 (φ(T̄ 2))T̄3
2 − sA

2 (φ(T 2))T 2
2 − sA

3 (φ(T 2))T 2
3 > 0.

Similarly, we can show that the last three corresponding expressions are negative. Therefore,
T 3(X̄) ÀK T 3(X).

If all the inequalities in (3.8) and (3.9) are strict, then by a similar proof as of (H1), T (X̄) ÀK

T (X). Furthermore, it can be shown that T (X̄) ÀK T (X) as long as z̄A > zA and z̄B < zB.
Now we assume that x̄A = xA, z̄A = zA and ȳA > yA. Then ∆T3 > 0, and hence

∆T 2
1 = bA

1 (T̄3 − T3) > 0,
∆T 2

2 = sA
1 (T̄1 − T1) + bA

2 (T̄3 − T3) > 0,
∆T 2

3 = sA
2 (φ(T̄ ))T̄2 + sA

3 (φ(T̄ ))T̄3 − sA
2 (φ(T ))T2 − sA

3 (φ(T ))T3 > 0.

Similarly, we have that ∆T 2
4 , ∆T 2

5 and ∆T 2
6 < 0. Thus, T 2(X̄) ÀK T 2(X). From the above

argument, it easily follows that if X,Y ∈ R6
+ satisfy X <K Y and either X or Y belongs to

Int(R6
+), then T 3(X) ¿K T 3(Y ).

Let X = (X1, X2) ∈ R3
+ × R3

+ satisfy Xi 6= 0, i = 1, 2. Then by Lemma 1, every forward
solution sequence of (3.1) enters the positive invariant set R3

+×R3
+ in at most three time steps. So

T 3(X) À 0. And this finishes the proof of (H4)′.
Thus, from Theorem 4 it follows that the solutions of (3.1) converge to the boundary equilib-

rium E1 or E2.
Now we assume φ̂A > φ̂B. In order to prove a), we next show that any solution sequence

of system (3.1) will not converge to E2. It suffices to prove that E2 repels all solutions from the
interior. To this end, we want to find a continuous function H : R3

+×R3
+ → R+ and a neighborhood

V of E2, such that H(T (X)) > H(X) > 0, for all X ∈ V ∩ Int(R6
+) and H(E2) = 0.

By (3.2) and (3.6), we see that MA(E2) = A2 is nonnegative, primitive and irreducible. So
MA(E2) has a positive dominant eigenvalue λ̂1 associated with a left eigenvector v̂1 such that
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v̂tr
1 MA(E2) = λ̂1v̂

tr
1 [5]. Also, from (3.3) we know that λ̂1 > 1. Define H : R3

+ × R3
+ →

R+ as H(X) = H((XA, XB)tr) = v̂tr
1 XA. Since λ̂1 > 1, we can find λ̃1 ∈ (1, λ̂1) such that

v̂tr
1 MA(E2) − λ̃1v̂

tr
1 > 0. By continuity of MA(X), there exists a neighborhood V of E2 =

(0, EB) ∈ R6
+ such that v̂tr

1 MA(X)− λ̃1v̂
tr
1 > 0. Then H(X) = 0 if and only if XA = 0 and H is

positive elsewhere in V ∩ Int(R6
+). Also notice that

T (X) = M(X)X = (MA(X)XA,MB(X)XB)tr.

Then
H(T (X)) = H((MA(X)XA,MB(X)XB)tr)

= v̂tr
1 MA(X)XA > λ̃1v̂

tr
1 XA > v̂tr

1 XA

= H(X), for anyX ∈ V ∩ {X ∈ R6
+ : XA > 0}.

Thus, E2 = (0, EB) repels all the solutions from the interior of R6
+. Furthermore, since none of

the solution sequences could enter the boundary in finite time, this concludes that all the solution
sequences with a initial value (XA

0 , XB
0 ) > (0, 0) will converge to E1 provided that φ̂A > φ̂B, i.e.

a) holds.

b) Follows by similar arguments as in a).

4. Numerical Results
In this section, we provide numerical results that corroborate the theoretical ones. We choose
parameter values similar to those used in [10] for the blue and yellows iris under fresh and brackish
environments. Species A denotes the blue iris population and species B denotes the yellow iris
population. We set the time unit to one year [10] and we use the simplified assumption that all
seeds germinate in one year and all seedlings become flowering plants in one year. For the graphs
in Figure 1 and Figure 2, we let s2(φ) = a2/(1+k2φ) and s3(φ) = a3/(1+k3φ), where k2 = k3 =
0.003 [10]. The initial conditions are set as (xA

0 , yA
0 , zA

0 ) = (0, 0, 1) and (xB
0 , yB

0 , zB
0 ) = (0, 0, 1).

[10].
We compute φ̂A and φ̂B for the two different environments. In freshwater environment, φ̂A =

22094.67 and φ̂B = 44366.67. So φ̂A < φ̂B. Therefore our theoretical results state that species B
is the winner species. This is corroborated in the results of Figure 1. On the other hand, in brackish
conditions, φ̂A = 19834.67 > 17953.33 = φ̂B therefore species A wins. In Figure 2, we see that
this is indeed the case.

5. Concluding Remarks
We developed and analyzed a three-stage structured single population model and a two species
model where each of the species is structured by three stages. For the single-species model, we
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Figure 1: A plot of the total population for species A and B using parameter values sA
1 = 0.7, aA

2 =
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2 = 1.08, sB
1 = 0.6, aB
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2 = 0.9.
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Figure 2: A plot of the total population for species A and B using parameter values sA
1 = 0.4, aA

2 =
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2 = 0.6, aB
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showed that if the inherent net reproductive number, R0, is less than one, then the model has only
the trivial equilibrium, which results in population extinction; while if R0 is greater than one, then
the model has an interior equilibrium which is globally asymptotically stable.

Investigating the interaction between the two species we found that when both species have
an inherent net reproductive number greater than one, the most likely outcome of competition
between the two species is competitive exclusion where the winner species is the one which has
higher density at which the net reproduction number is equal to one. We showed that coexistence
equilibrium exists if φ̂A = φ̂B with R(φ̂A) = 1 = R(φ̂B). We also showed that under the simplified
assumption that during one year all surviving seeds germinate and all surviving seedlings become
flowering plants, competitive exclusion is the outcome for our model simulated with parameters
chosen to resemble the blue and yellow irises in fresh and brackish water environments.

In this paper, we were interested in modeling competition between two species which have
similar competition efficiencies. This, led to survivorship functions which are dependent on the
total number of juveniles and adults of both species (denoted by φ). The dynamics of the resulting
model (3.1) are analogous to the classical continuous 2-dimensional Lotka-Volterra model (and
to its discrete version studied in [6]) for the case when the nullclines do not intersect [2] . In
particular, the resulting dynamics is competitive exclusion.

It is possible to obtain different dynamics including coexistence and bistability (founders effect)
by allowing species to have different competition efficiencies. To this end, we modify the model
(3.1) as follows: 




xA
t+1 = bA

1 zA
t

yA
t+1 = sA

1 xA
t + bA

2 zA
t

zA
t+1 = sA

2 (φA
t + c1φ

B
t )yA

t + sA
3 (φA

t + c1φ
B
t )zA

t

xB
t+1 = bB

1 zB
t

yB
t+1 = sB

1 xB
t + bB

2 zB
t

zB
t+1 = sB

2 (c2φ
A
t + φB

t )yB
t + sB

3 (c2φ
A
t + φB

t )zB
t .

(5.1)

Here c1 and c2 represent a measure of the strength of interspecific competition between the two
species.

Using numerical simulations, we next show that indeed model (5.1) exhibits, in addition to
competitive exclusion, coexistence and bistability. Therefore, the model (5.1) has similar dynam-
ical behavior to the classical continuous 2-dimensional Lotka-Volterra model. In our numerical
examples below, we will use sA

2 (φ1) = aA
2 /(1 + k1φ1), s

A
3 (φ1) = aA

3 /(1 + k2φ1), s
B
2 (φ2) =

aB
2 /(1 + k1φ2), and sB

3 (φ2) = aB
3 /(1 + k2φ2), where φ1 = φA + c1φ

B and φ2 = c2φ
A + φB.

The coefficients in the examples are bA
1 = 4, bB

1 = 5, bA
2 = 2, bB

2 = 1, sA
1 = 0.5, sB

1 = 0.8, aA
2 =

0.6, aB
2 = 0.7, aA

3 = 0.4, aB
3 = 0.6, k1 = 0.01, k2 = 0.1.

In Figure 3, we let c1 = 0.4, c2 = 0.2, which means the interspecific competition levels are
low. With initial conditions (xA

0 , yA
0 , zA

0 ) = (0, 0, 15) and (xB
0 , yB

0 , zB
0 ) = (0, 0, 10), the two

species coexist. In Figure 4, we let c1 = 2, c2 = 4, which means the interspecific competition
levels are high. Figure 4(a) shows that using the initial conditions (xA

0 , yA
0 , zA

0 ) = (0, 0, 15) and
(xB

0 , yB
0 , zB

0 ) = (0, 0, 10) leads to the extinction of species B. Figure 4(b) shows that using the
initial conditions (xA

0 , yA
0 , zA

0 ) = (0, 0, 10) and (xB
0 , yB

0 , zB
0 ) = (0, 0, 15) leads to the extinction of
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species A.
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Figure 3: Coexistence of both species.
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Figure 4: Bistablity (a) Species A persists (b) Species B persists.

In the future, we plan to theoretically investigate the dynamics of the more general model (5.1).
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Appendix
For convenience to the reader, we recall a few results that are utilized to prove global stability for
the one and two species models. To this end we recall the following result [1] for monotone maps
which is used to prove the global stability of the interior equilibrium for the one species model:

Lemma 2. Let T : Rn
+ → Rn

+ be a continuous, monotone map and a ≤ b be points in Rn
+. If

a ≤ T (a) and T (b) ≤ b, and if T has a unique fixed point x∗ in the order interval [a, b] := {x ∈
Rn

+ | a ≤ x ≤ b}, then every solution sequence of the discrete system x(t + 1) = T (x(t)), starting
in [a, b], converges to x∗.

Next we recall a result from [9] that we used to prove the global stability of the boundary
equilibrium for the two species model. In what follows we use the exact notation used in [9]. For
i = 1, 2, let Xi be ordered Banach spaces with positive cone X+

i such that IntXi 6= ∅. If xi, x̄i ∈ Xi,
then we write xi ≤ x̄i if x̄i − xi ∈ X+

i , xi < x̄i if xi ≤ x̄i and xi 6= x̄i, and xi ¿ x̄i if x̄i − xi ∈
IntX+

i . Let X = X1×X2, X+ = X+
1 ×X+

2 , and K = X+
1 × (−X+

2 ). K has nonempty interior given
by IntK =IntX+

1 × (−IntX+
1 ). It generates the partial order relations ≤K ,<K ,¿K . In this case,

suppose that x = (x1, x2), x̄ = (x̄1, x̄2) ∈ X+, then

x <K x̄ ⇐⇒ x1 < x̄1 and x̄2 < x2.

x ¿K x̄ ⇐⇒ x1 ¿ x̄1 and x̄2 ¿ x2.

Let T : X+ → X+ be continuous and T n is the n-fold composition of T . Suppose that x = (x1, x2)
and x̄ = (x̄1, x̄2) ∈ X+. Consider the following hypotheses on T :

(H1) T is order compact and x <K x̄ implies T (x) <K T (x̄).

(H2) T (0) = 0 and 0 is a repelling fixed point.

(H3) T (X+
1 × {0}) ⊂ X+

1 × {0}. There exists x̂1 À 0 such that T ((x̂1, 0)) = (x̂1, 0), and
T n((x1, 0)) → (x̂1, 0) for every x1 > 0. The symmetric conditions hold for T on {0} × X+

2

with the fixed point denoted by (0, x̃2).

(H4) If x, y ∈ X+ satisfy x <K y and either x or y belongs to IntX+, then T (x) ¿K T (y). If
x = (x1, x2) ∈ X+ satisfies xi 6= 0, i = 1, 2, then T (x) À 0.

We denote the boundary fixed point of T as: E0 = (0, 0), E1 = (x̂1, 0), E2 = (0, x̃2) and the order
interval I := [0, x̂1]× [0, x̃2]. Then we have the following theorem[9]:

Theorem 4. Let (H1)–(H4) hold. Then the omega limit set of every orbit is contained in I and
exactly one of the following holds:

(a) There exists a positive fixed point E∗ of T in I.

(b) T n(x) → E1 as n →∞ for every x = (x1, x2) ∈ I with xi 6= 0, i = 1, 2.
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(c) T n(x) → E2 as n →∞ for every x = (x1, x2) ∈ I with xi 6= 0, i = 1, 2.

Finally, if (b) or (c) holds and x = (x1, x2) ∈ X+ \ I satisfies xi 6= 0, i = 1, 2, then either
T n(x) → E1 as n →∞ or T n(x) → E2 as n →∞.

As stated in [9] Theorem 4 is still true if (H4) is replaced by the following (H4)′.

(H4)′ If x, y ∈ X+ satisfy x <K y and either x or y belongs to IntX+, then T l(x) ¿K T l(y) for
some l ∈ Z+; If x = (x1, x2) ∈ X+

1 × X+
2 satisfies xi 6= 0, i = 1, 2, then Tm(x) À 0, for

some m ∈ Z+.
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